Machine Learning for Harvesting Health Knowledge

Block Seminar - Saarland University
7 May 2020
Instructors

1. Patrick Ernst
2. Erisa Terolli
3. Andrew Yates
Erisa Terolli

● **Short CV**
 ○ Computer Engineering Diploma from Epoka University, Albania.
 ○ PhD in Computer Science, Sapienza University of Rome, Italy.
 ○ Post-Doc Researcher at MPII.

● **Research Interest**
 ○ IR for Biomedicine.
 ○ Graph Mining.
 ○ Social web data modeling and analysis.

● **Email**
 ○ eterolli@mpi-inf.mpg.de
Patrick Ernst

● Short CV
 ○ Master of Science from University of Kaiserslautern
 ○ PhD in Computer Science, University of Saarland/MPII
 ○ Post-Doc Researcher at MPII
 ○ Machine Learning Scientist with Amazon

● Research Interest
 ○ Knowledge Bases and IR for Biomedicine
 ○ Personalization

● Email
 ○ peernst@mpi-inf.mpg.de
Andrew Yates

● Short CV
 ○ Computer Science BSc from Illinois Institute of Technology, Chicago, IL, USA
 ○ Computer Science PhD from Georgetown University, Washington, DC, USA
 ○ Senior Researcher at MPII

● Research Interest
 ○ Information Retrieval: biomedical applications, neural methods, and personalization
 ○ NLP: biomedical applications, personal knowledge base construction, and credibility analysis

● Email
 ○ ayates@mpi-inf.mpg.de
Basic Seminar Info

- Type: Block Seminar
- Number of credits: 7 ECTS
- Lecture/Meeting:
 - 7 May 2020 - Introductory Lecture
 - August 2020 - 2 day block seminar (TBD)
- Room: Zoom until a further notice
- Materials: will be put on the seminar web-page
Main Blocks

● Five Topics
 ○ Information Retrieval, Automatic Health Assessment, Social Media Analysis, Information Extraction, Conversational AI

● Two scientific publications

● Written report
 ○ Hand in your write-up in pdf format before the specified deadline.
 ○ 8 pages including references.
 ○ Obeye the scientific standards and avoid plagiarism!
 ○ Compulsory midterm meeting with instructor.

● Peer Review report
 ○ Hand in your review in pdf format before the specified deadline.

● Oral Presentation
 ○ 25 minutes plus 10 minutes discussion.
 ○ Compulsory. You fail if you do not show-up for the oral presentation.
Topics Distribution

- Express your topic preferences.
 - Pick your top three topics by Saturday (May 9) at https://forms.gle/ERTNXz5N53rzBcm9
 - Map each student with their top preferences
 - Conflict: Break the ties arbitrarily
- Each student will be matched with a primary topic.
- Each student will be given a secondary topic for peer reviewing.
- Each student will be matched with one instructor.
- All assignments will be made by May 11.
Machine Learning for Harvesting Health Knowledge (Block Seminar)

Choose your top 3 preferences for the topics of the Machine Learning For Harvesting Health Knowledge Block Seminar. Deadline for filling this form is May 10, 2020 at 23:59.

What is your 1st preference?
- Information Retrieval
- Automatic Health Assessment
- Social Media Analysis for Health Care
- Information Extraction
- Conversational AI

What is your 2nd preference?
- Information Retrieval
- Automatic Health Assessment
- Social Media Analysis for Health Care
- Information Extraction
- Conversational AI

What is your 3rd preference?
- Information Retrieval
- Automatic Health Assessment
- Social Media Analysis for Health Care
- Information Extraction
- Conversational AI

Full Name

Short answer text

Matriculation Number

Short answer text

Email Address

Short answer text
Seminar Timeline

- May 9: Students pick their top 3 preferential topics.
- May 11: Topic Distribution.
- June 16: Midterm Meeting with Instructors.
- August 6: Review Submission Deadline.
- August: Two day block seminar for oral presentations (TBD).
Evaluation

1. Technical Report (max 50 points)
2. Oral Presentation (max 30 points)
3. Peer Review (max 20 points)

Grades

- >= 90: 1
- >= 80: 2
- >= 70: 3
- >= 60: 4
- < 60: 5

https://www.pngfuel.com/
What makes a good technical report?

- Should NOT be just a summary of your assigned papers.
- Review the literature for your assigned topic.
- Contextualize general approaches of your topic to the medical domain.
- Accurate
- A fluent narrative
- Concise and Clear
- Comprehensive
A good review should be:

- **Focused**
 - Focus on the most important elements of the report.

- **Reasonable**
 - Make realistic requests that are relevant to the report. Avoid “Nice to have” changes.

- **Critical but Constructive**
 - Address problems clearly.
 - Write suggestions on why and how could the suggested problems should be tackled.

- **Structured**
 - Write a brief summary: Shows you got the key points.
 - Address problems on Major vs Minor Points.
 - Ideally write a paragraph for each Major Point.

- **Polite and Professional**
 - Express your views fairly but POLITELY.
Preparing your oral presentation

- Communicate some information to an audience.
- A presentation should be: Informative and Interesting.

Tips:

- Organize your thoughts
 - Start with an outline and develop good transition between sections.
- Have a strong opening
 - Why should people listen to you?
- Finish with a bang
 - Finish with a couple of sentences that sum up the importance of your work.
- Time yourself
- Practice a lot
Presenting...

- Excitement
- Speak with confidence
- Make eye contact with the audience
- Avoid reading your presentation
- Leave some time for QA
Resources

- Seminar web-page:

- Topics Preferences Form:
 - https://forms.gle/ERTNXz5N53rzbBcm9

- Technical Report Template:

- Peer Review Report Template:
 - https://docs.google.com/document/d/13I1Kao4eIsDBKv205Gy6snetoe8ML4JRjz69LgN65W8/edit?usp=sharing
Questions?
Topic Explanations

Five Topics

● Information Retrieval
● Social Media Analysis
● Automatic Health Assessment
● Information Extraction
● Conversational AI
Information Retrieval

IR: finding resources to satisfy a user’s information needs

In the context of health/medicine, this is often finding relevant biomedical literature
● *remdesivir* severe *acute respiratory syndrome*

...or finding credible articles written for laypeople (non-experts)
● “*What are the symptoms of COVID-19?*”
● “*coronavirus symptoms*”
Information Retrieval

PubMed: a repository of biomedical literature used by experts
An evidence-based framework for priority clinical research questions for COVID-19

Carlyn Harris,1,2 Gail Carson,3,4 J Kenneth Baille,4,5 Peter Horby,3,4 and Harish Nair,2

Abstract

Background

On 31 December, 2019, the World Health Organization China Country Office was informed of cases of pneumonia of unknown aetiology. Since then, there have been over 75,000 cases globally of the 2019 novel coronavirus (COVID-19), 2000 deaths, and over 14,000 cases recovered. Outbreaks of novel agents represent opportunities for clinical research to inform real-time public health action. In 2018, we conducted...
<topic number="1">
 <disease>melanoma</disease>
 <gene>BRAF (E586K)</gene>
 <demographic>64-year-old female</demographic>
</topic>

<topic number="4">
 <disease>Breast cancer</disease>
 <gene>FGFR1 Amplification, PTEN (Q171)</gene>
 <demographic>67-year-old female</demographic>
 <other>Depression, Hypertension, Heart Disease</other>
</topic>

Queries from TREC Precision Medicine
Information Retrieval

Queries from *TREC COVID Challenge*

Topic 30

query
coronavirus remdesivir

question
is remdesivir an effective treatment for COVID-19?

narrative
seeking specific information on clinical outcomes in COVID-19 patients treated with remdesivir

Topic 18

query
masks prevent coronavirus

question
what are the best masks for preventing infection by Covid-19?

narrative
What types of masks should or should not be used to prevent infection by Covid-19?
Information Retrieval: Biomedical Literature

(Zhao et al 2019) propose a neural framework for retrieving biomedical literature.
Information Retrieval: Clinical Decision Support

(Alsulmi and Carterette 2016) investigate query reformulation strategies for improving Clinical Decision Support (CDS) search to identify relevant articles

- In CDS, a clinical case report is the query
- Often a vocab mismatch between the query and relevant scientific literature

<table>
<thead>
<tr>
<th>Topic Type</th>
<th>Clinical Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td>58-year-old woman with hypertension and obesity presents with exercise-related episodic chest pain radiating to the back.</td>
</tr>
<tr>
<td>Test</td>
<td>40-year-old woman with severe right arm pain and hypotension. She has no history of trauma and right arm exam reveals no significant findings.</td>
</tr>
<tr>
<td>Treatment</td>
<td>63-year-old heavy smoker with productive cough, shortness of breath, tachypnea, and oxygen requirement. Chest x-ray shows hyperinflation with no consolidation.</td>
</tr>
</tbody>
</table>
Information Retrieval: Conclusion

Finding documents to satisfy a user’s biomedical information needs
● What literature is available about this disease given patient’s characteristics?
● Given a clinical case report, what articles support a treatment/test/diagnosis?
● What articles address a layperson’s query?

Key point: biomedical queries to retrieve biomedical information, which may be written for experts or for lay people
Social Media Analysis

Large & growing amount of health-related information on social media

- 8% of US adult internet users “have posted a health-related question or comment online within the past year” (Survey by Pew Research)

Social Media (Twitter, Reddit, specialized forums, etc) provide unique opportunities to observe users’ behavior:

- “I’ve had trouble sleeping since starting Prozac (fluoxetine)”
- “Zoloft is making my depression worse, so I’m changing meds next week”

Idea: use this observational data to enable applications, such as

- Assessing drug effectiveness
- Discovering unknown drug side effects
- Estimating disease prevalence
Social Media Analysis

Social media also brings unique difficulties, such as

- Colloquial terminology / Layperson vocabulary (that is often verbose)
 - “heart palpitations” (expert term)
 MayoClinic: feelings of having a fast-beating, fluttering or pounding heart
 - “my heart is beating fast” (colloquial)
 - “my chest is pounding” (colloquial)
 - “pain in my chest” (different)

- Causality: are the palpitations a side effect or a symptom of health condition?
- Credibility/Accuracy: is it truthful and relevant for the intended use case?
 “My heart is beating fast -- yours could be too with a cup of Folgers coffee!”
Social Media Analysis: Adverse Drug Events

Adverse Drug Event (ADE): “an injury caused by taking medication” (Wikipedia)
- i.e., a negative drug side effect. Also called Adverse Drug Reactions (ADRs)
- *Pharmacovigilance* is the monitoring of ADEs

(Lee et al. 2017) considers post-market pharmacovigilance using Twitter

<table>
<thead>
<tr>
<th>Class</th>
<th>Tweet</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADE</td>
<td>Oh yay, [Niaspan] reaction. Face burning up.</td>
</tr>
<tr>
<td>Non-ADE</td>
<td>My face is on fire and Tylenol isn’t helping. I’m burning up. Fingers crossed I’m not getting sick.</td>
</tr>
</tbody>
</table>

Approach: classification task using a semi-supervised neural network (CNN)
Social Media Analysis: Drug Effectiveness

Drug Effectiveness: a drug’s ability to cure a disease
● i.e., whether taking a drug helped the patient

(Chai et al 2019) study drug efficacy by performing relation extraction on tweets

<table>
<thead>
<tr>
<th>Tweets</th>
<th>Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) I started off on Zoloft, I’m going next week to get changed. It helps my ocd and anxiety, but made my depression worse.</td>
<td>better: <ocd, Zoloft>, <anxiety, Zoloft>, worse: <depression, Zoloft></td>
</tr>
<tr>
<td>(ii) No cold medicine has ever cured a cold. # Mucinex # Robitussin.</td>
<td>maintain: <cold, Muxinex>, <cold, Robitussin></td>
</tr>
<tr>
<td>(iii) OK I must sleep now. Despite all the normal meds I take at bedtime I had to add in an Imitrex for the migraine I feel coming.</td>
<td>No relation exists (since the effect of “migraine” is not mentioned).</td>
</tr>
</tbody>
</table>

...using a graph of chemical (drug) and disease mentions
Social Media Analysis: Conclusion

Using social media to *learn about health topics through observational studies*

- What claims do people make?
- How do the claims relate to information from other sources?

Key point: aggregating information across users to study a topic
Automatic Health Assessment

Social Media and other user-generated data can also be used to assess a user
- The goal is to assess a given user, whereas in the previous topic the goal was to conduct observational studies across users

Mental health in particular has a unique connection to language
- Can we tell when someone is depressed? Or at risk of self-harm?
- …without an explicit mention of either?

When someone makes a health-related claim, is it accurate?
“*I just had a heart attack*”
ReachOut Forums

ReachOut Forums is a supportive, safe and anonymous space where people care about what's happening for you, because they've been there too.

Read what others are saying about similar situations:
- Get insight into what's happening for you
- Ask questions if you want to

<table>
<thead>
<tr>
<th>GREEN</th>
<th>AMBER</th>
<th>RED</th>
</tr>
</thead>
<tbody>
<tr>
<td>I’m proud that I was able to call and keep up a phone conversation with my mum.</td>
<td>There are so many stuff I’m thinking about, but my medications are slowing my thoughts down and making it more manageable</td>
<td>I feel helpless and things seem pointless. I hate feeling so down</td>
</tr>
</tbody>
</table>
Auto Health Assessment: Severity of Suicide Risk

(Gaur et al 2019) automatically determine whether a user is at risk of suicide

...by identifying mentions of suicidal thoughts and actions in the user's posts and using a neural network for text classification.
Auto Health Assessment: Personal Health Mentions

Personal Health Mentions may indicate a user has experienced a condition or event
- Previously, the assessment was an inference based on the user’s data
- This assessment is of whether the user is describing a real event

(Karisani and Agichtein 2018) detect whether text contains a personal health event
- “I almost had a heart attack when I found out they’re doing a lettering workshop at @heathceramics”
- “My mom died to lung cancer thanks to smoking for like 40 years.”

Approach: represent as word embeddings; modify embedding space to improve classification
Auto Health Assessment: Conclusion

Making predictions about a user’s health status
● Can we infer that a user has some health condition, is at risk, etc?
● Is a user stating that they have some health condition? (or is making some other health-related claim?)

Key point: assessing a user’s activity to learn about the user’s health
References

From seminar website:

- **Information Retrieval**

- **Automatic Health Assessment**

- **Social Media Analysis for Health Care**
Information Extraction
Goal

Extract structured information from noisy, highly-unstructured input data

Facilitates:

• Information Retrieval
• Reasoning
• Information Discovery

Encyclopedias
Scientific Literature
Social Sources
Goal

Extract structured information from noisy, highly-unstructured input data

Facilitates:
- Information Retrieval
- Reasoning
- Information Discovery
Ambiguity

Syntactical ambiguity: finding the correct grammatical or structural interpretation of human text

Semantic ambiguity: finding the right interpretation of human text given context

2.5 mg Albuterol may be used to treat acute exacerbations, particularly in children.

men is a disease in which one or more of the endocrine glands are overactive or forms a tumor.
How much do I need to know?

• Unsupervised (Open Information Extraction): just relies on a large input corpus without any annotations

• Supervised: relies on a large input corpus with full annotation

• Distantly supervised: the middle ground – large input corpus with few annotations derived from external source

2.5 mg Albuterol may be used to treat acute exacerbations, particularly in children.

Physical features in patients with Down syndrome may include a deformation of their hands.
How much do I need to know?

• Unsupervised (Open Information Extraction): just relies on a large input corpus without any annotations

• Supervised: relies on a large input corpus with full annotation

• Distantly supervised: the middle ground – large input corpus with few annotations derived from external source
How much do I need to know?

• Unsupervised (Open Information Extraction): just relies on a large input corpus without any annotations

• Supervised: relies on a large input corpus with full annotation

• Distantly supervised: the middle ground – large input corpus with few annotations derived from external source
Entity Extraction

• An entity is a collection of all possible mentions that refer to the identical real-world object or abstract concept.

• Named Entity Recognition and Disambiguation (NERD):
 • Detection of mentions of entities (Recognition)
 • Resolving the ambiguity of these mentions to canonical entities (Disambiguation)

2.5 mg Albuterol may be used to treat acute exacerbations, particularly in children.

Physical features in patients with Down syndrome may include a deformation of their hands.
A fact is an instance of an n-ary relation:

\[R(a_1, \ldots, a_n) \]

where \(R \) is an n-ary relation and \(a_1, \ldots, a_n \) are constants (e.g. entities)

Fact harvesting:

- aims to identify new relation mentions to harvest new facts.
- A relation mention is a piece of text expressing a relation between a tuple of entities

Intestinal inflammation and cancer.

Patients with ulcerative colitis and Crohn’s disease are at an increased risk for developing colorectal cancer (CRC). Chronic inflammation is believed to promote carcinogenesis. The risk for colon cancer increases with the duration and anatomic extent of colitis and presence of other inflammatory disorders (such as primary sclerosing...
Knowledge Base Construction

Knowledge Base Construction (KBC) is the process of populating a Knowledge Base with entities, facts or rules harvested from large amounts of input data.

Initial Knowledge Base

- **smoking**
- **sickle cell anemia**
- **Raynaud’s disease**
- **erythromelalgia**

- **aggravates**
- **creates risk**

Sources

- **Social Sources**
 - ehealth
 - HealthBoards
 - Patient.co.uk

- **Scientific Literature**
 - PubMed
 - PubMed Central

- **Encyclopedias**
 - Mayo Clinic
 - Wikipedia
 - Drugs.com
Knowledge Base Construction

Knowledge Base Construction (KBC) is the process of populating a Knowledge Base with entities, facts or rules harvested from large amounts of input data.
Knowledge Base Construction

Knowledge Base Construction (KBC) is the process of populating a Knowledge Base with entities, facts or rules harvested from large amounts of input data.

Social Sources
Scientific Literature
Encyclopedias

Initial Knowledge Base

- hypertension
 - creates risk
 - aggravates
- smoking
- sickle cell anemia
 - creates risk
- erythromelalgia
- Raynaud’s disease
 - causes
- lupus
 - causes
- gene mutation
- diabetes
Knowledge Base Construction (KBC) is the process of populating a Knowledge Base with entities, facts or rules harvested from large amounts of input data.
A biomedical perspective

• Google Health Knowledge Graph

• Protein Interaction (PPI) Databases

• Unified Medical Language System

• ...
A biomedical perspective

• Google Health Knowledge Graph

• Protein Interaction (PPI) Databases

• Unified Medical Language System

• ...
A biomedical perspective

• Google Health Knowledge Graph

• Protein Interaction (PPI) Databases

• Unified Medical Language System

• ...
Conversational AI
Alexa – What is Conversational AI?

„is the study of techniques for software agents that can engage in natural conversational interactions with humans“
Alexa – What is Conversational AI?

• **Question Answering:** providing concise, direct answers to user queries: general (weather, sport results) and domain-specific symptoms of disease, business acquisitions

• **Task completion:** accomplishing of user actions: reservations, meeting scheduling, handling of order returns

• **Social chat:** conversing seamlessly and appropriately with users
Ok Google – How do we build conversational AIs?

Table 1.1: Reinforcement Learning for Dialogue. CPS stands for Conversation-turns Per Session, and is defined as the average number of conversation-turns between the bot and the user in a conversational session.

<table>
<thead>
<tr>
<th>Dialogue Type</th>
<th>Component</th>
<th>Task</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialogue</td>
<td>QA</td>
<td>Understanding of user query intent</td>
<td>(min) CPS</td>
</tr>
<tr>
<td></td>
<td>clarification questions or answers</td>
<td>Relevance of answer,</td>
<td></td>
</tr>
<tr>
<td>Task-oriented</td>
<td>task-oriented understanding of user goal</td>
<td>Dialogue-act and slot/value</td>
<td>Task success rate, (min) CPS</td>
</tr>
<tr>
<td>Chitchat</td>
<td>conversation history and user intent</td>
<td>Responses</td>
<td>User engagement, measured in CPS</td>
</tr>
<tr>
<td>Top-level bot</td>
<td>top-level bot understanding of user top-level intent</td>
<td>Options</td>
<td>User engagement, measured in CPS</td>
</tr>
</tbody>
</table>

Figure 1.3: Traditional NLP Component Stack. Figure credit: Bird et al. (2009).

Neural approaches are now transforming the field of NLP and IR, where symbolic approaches have been dominating for decades. NLP applications differ from other data processing systems in their use of language knowledge of various levels, including phonology, morphology, syntax, semantics and discourse (Jurafsky and Martin, 2009). Historically, much of the NLP field has organized itself around the architecture of Fig. 1.3, with researchers aligning their work with one component task, such as morphological analysis or parsing. These tasks can be viewed as resolving (or realizing) natural language ambiguity (or diversity) at different levels by mapping (or generating) a natural language sentence to (or from) a series of human-defined, unambiguous, symbolic representations, such as Part-Of-Speech (POS) tags, context free grammar, first-order predicate calculus. With the rise of data-driven and statistical approaches, these components have remained and have been adapted as a rich source of engineered features to be fed into a variety of machine learning models (Manning et al., 2014).

Neural approaches do not rely on any human-defined symbolic representations but learn in a task-specific neural space where task-specific knowledge is implicitly represented as semantic concepts using low-dimensional continuous vectors. As Fig. 1.4 illustrates, neural methods in NLP tasks (e.g., machine reading comprehension and dialogue) often consist of three steps: (1) encoding symbolic representations, (2) reasoning over these representations, and (3) generating responses.
Neural Approaches to Conversational AI

End2End Deep Learning
Neural Approaches to Conversational AI
Siri – Tell me the Open Challenges

• Specificity: generate uninformative responses such as “I don’t know” or “Alright”
Siri – Tell me the Open Challenges

• Specificity: generate uninformative responses such as “I don’t know” or “Alright”

• Consistency: trained from chats with multiple personas
Siri – Tell me the Open Challenges

• Specificity: generate uninformative responses such as “I don’t know” or “Alright”

• Consistency: trained from chats with multiple personas

• Knowledge Access
Siri – A Medical Outlook

• **Question Answering:** sideeffect of drugs, allergies, symptom check

• **Task completion:** telemedicine to cover general checkups

• **Social chat:** social skill training, behaviour analysis
Questions?