
Saarland University

Faculty of Natural Science and Technology I
Department of Computer Science

Master’s thesis

CDCL with Reduction

submitted by

Andreas Teucke

submitted

May 24, 2013

Supervisor

Prof. Dr. Christoph Weidenbach

Reviewers

Christoph Weidenbach

Sebastian Hack

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have
not used any other media or materials than the ones referred to in this thesis.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbrücken,

Date Signature

3

Abstract

Conflict Driven Clause Learning (CDCL) [1] is a very successful algorithm
for solving propositional Satisfiability. At its core lies unit propagation which
forces the value of a propositional variable when it is contained in a unit
clause. This thesis extends CDCL to RCDCL (Reduction Conflict Driven
Clause Learning) where unit propagation is generalized to subsumption res-
olution and thereby increases the power of propagation. Intuition suggests
that this will decrease the depth of proof search.

I define the rules of the extended calculus, prove correctness, and describe
their implementation.

Acknowledgment

My deepest gratitude is due to Professor Dr. Christoph Weidenbach for
offering me this topic. Our meetings were interesting, and I was looking
forward to them each week. I also thank Dr. Uwe Waldmann for his lectures
introducing me to Automated Reasoning. Further Armin Biere’s lecture on
SAT during Summer school and his solver cleaneling greatly aided me in the
implementation of my own solver. Finally, I am deeply grateful to my family
for their support and reminding me to work when I was too lazy and to take
breaks when I was working too much.

7

Contents

1 Introduction 11
1.1 Structure of the Thesis . 12

2 Preliminaries 13
2.1 Notations . 13
2.2 CDCL Calculus . 13

2.2.1 Example . 16
2.3 Subsumption and Subsumption Resolution 16

3 The RCDCL Calculus 19
3.1 States . 19
3.2 Semantics . 20
3.3 RCDCL Rules . 21

3.3.1 The Propagation Phase 21
3.3.2 The Conflict Phase . 22

3.4 Non-linear Conflict Analysis 24

4 Properties of RCDCL 27
4.1 Consistency of the Model Assumption 27
4.2 Consistency of the Conflict Clauses 29
4.3 Correctness of the Conflict Analysis 33
4.4 Model Construction . 36
4.5 Soundness . 39
4.6 Redundancy of Learnt Clauses 41
4.7 Termination . 42

5 Implementation 47
5.1 Data Structures . 47
5.2 Propagation Phase . 48

5.2.1 Propagation . 48
5.2.2 Backward Subsumption Resolution 49
5.2.3 Determining a Literal’s Truth value 51

9

5.2.4 Partner Selection for Subsumption Resolution 51
5.2.5 The LitSet Data Structure 53
5.2.6 Propagation after Restart 54

5.3 Conflict Phase . 56
5.3.1 Conflict Analysis . 56
5.3.2 Forward Reduction of Learned Clauses 58

6 Results 61
6.1 The Effect of Subsumption on Satisfied Clauses 61
6.2 Pure Literal Elimination . 62
6.3 Development . 62
6.4 Evaluation . 64

6.4.1 First Experiment . 64
6.4.2 Second Experiment . 65

6.5 Conclusion . 67
6.5.1 Future Work . 67

Bibliography 69

10

1 Introduction

Since the introduction of the efficient 2-watched literal data structure [10]
and conflict analysis using the implication graph [12], Boolean constraint
propagation (BCP) is at the core of any modern conflict driven clause learn-
ing (CDCL) based SAT solver [12] [6]. From delaying costly splitting de-
cisions in the search to providing the implication graph; the quality of a
solver depends on the efficiency and power of BCP. However the propagated
information comes from only one restricted source: Unit clauses under the
partial assignment. Intuition suggests that a generalization of BCP that uses
more information about the state would be more powerful and thereby, could
shorten the search.

As a generalization, I propose an established method from pre-processing
called Subsumption resolution [5] - also known under similar names such as
matching replacement or decremental resolution [14].

C _ L D _ L

C _ L D
C Ď D

In the case that the resolvent of two clauses subsumes one of its parents
the subsumed clause is replaced. This can also be interpreted as deleting the
resolution literal from the parent clause. The special case that C is empty is
equivalent to BCP.

To reasonably use Subsumption resolution under a partial assignment as
part of BCP, important general properties of CDCL implementations need to
be preserved. For example, efficient backtracking without requiring updates
of the clause data structures and the ability to analyze conflicts with an
implicit conflict graph.

To solve both problems, I modify the assignment stack to also hold reduc-
tion literals. Whereas propagated literals are associated with their asserting
clause and denote the forced assignment of the unit literal, reduction literals
are linked with both parent clauses of a Subsumption resolution and denote
the removal of the literal from the affected parent clause.

I extend a standard CDCL calculus with several new rules to handle prop-
agation, conflict analysis, and backtracking of reduction literals. The new

11

calculus is called reduction conflict driven clause learning (RCDCL). Due to
the added complexity in the model assumption and conflict clauses, conflict
analysis involving Subsumption resolution can no longer be translated into
a linear sequence of resolution steps as in CDCL. Instead, the analysis now
involves branching resolution trees.

These changes to the definitions and behavior of the calculus prevent ex-
isting proofs for CDCL to be applied to RCDCL. Hence, I formulate and
prove many new, strengthened lemmas and eventually, use those lemmas to
also prove soundness and termination of RCDCL.

I have implemented the RCDCL calculus based on the CDCL solver SPASS-
SATT [11]. There are two main tasks to complete.

The first is to find a method to identify Subsumption resolutions. As this
involves comparing pairs of clauses, the complexity is inherently quadratic.
Much care and specialized data structures are necessary to prevent this from
completely dominating the solvers run time.

Secondly, in the abstract calculus the analysis of a conflict is now even
exponential. However, I will show that a linear time implementation is still
possible.

Lastly, I tested my implementation against itself without Subsumption
resolution on several unsatisfiable benchmarks to discover the empirical effect
of Subsumption resolution on the search.

1.1 Structure of the Thesis

In the following thesis, I will begin in chapter 2 by repeating the standard
notations of SAT and explaining the underlying basic CDCL calculus. This
calculus is then extended to RCDCL in three steps in chapter 3.

First, the modifications to the definitions and their semantics, then the
new propagation rules, and last, the rules for conflict analysis.

In chapter 4, I prove correctness and termination of the new calculus. The
implementation is described in chapter 5. The thesis is concluded in chapter 6
with insights during the development and the results of the implementation’s
evaluation.

12

2 Preliminaries

2.1 Notations

For an atom l, there are two literals, the positive literal l and the negative
literal l. A clause is a disjunction of literals, and a CNF formula is a con-
junction of clauses. A clause can be seen as a finite set of literals and a CNF
formula as a finite set of clauses. The length of a clause is the number of
literals in the clause. A clause of length one is a unit clause.

A model for a CNF formula N is a function that maps literals in N to true
or false, while a model assumption M is a partial function. Capital Letters
C,D,E . . . denote clauses, N,N 1, . . . denote formulas, and M,M1,M2, . . .
denote models and model assumptions.

If l is true, then l is false and vice versa. A literal l that does not have
an assigned value is undefined. A clause C is satisfied by a model or model
assumption if l is true for some literal l P C and falsified by it if every l P C is
false. A falsified clause is also called a conflict clause. A model satisfies N if
it satisfies every clause in N . N is satisfiable if there exists a satisfying model
and unsatisfiable otherwise. If two CNF formulas N and N 1 are satisfied by
the same models, they are equivalent.

2.2 CDCL Calculus

A CDCL Calculus is given in Figure 2.1. It formalizes DPLL with Boolean
constraint propagation, backtracking, analysis of conflicts, and clause learn-
ing.

States are triples of model assumptions M , a CNF formula N , and a third
component, which is either J,K or a conflict clause. A model assumption
M is written as a list of decision and propagation literals where each literal
l PM is true. Both types correspond to their respective rules that add them
to the model assumption. Decision literals are written as lJ, and propaga-
tion literals are written lC , where C is a clause that serves as justification.
The start state is pε;N ;Jq with the empty model assumption ε. The final

13

Decide
pM ;N ;Jq ñCDCL pMlJ;N ;Jq,
if l is undefined in M .

Propagate
pM ;N ;Jq ñCDCL pMlC_l;N ;Jq,
if C _ l P N , M (C, and L is undefined in M .

Conflict
pM ;N ;Jq ñCDCL pM ;N ;Dq,
if D P N and M (D.

Fail
pM ;N ;Cq ñCDCL pε;N ;Kq, if no lJ occurs in M .

Backtrack
pMl;N ;Dq ñCDCL pM ;N ;Dq,
if l does not occur in D.

Explain
pMlC_l;N ;D _ lq ñCDCL pM ;N ;D _ Cq

Continue
pMlJ;N ;Dq ñCDCL pMlD;N Y tDu;Jq, if l P D.

Figure 2.1: The CDCL Calculus

states are pM ;N ;Jq where M is a satisfying model of N and the failed state
pε;N ;Kq representing the unsatisfiability of N . All other states are interme-
diate states, where pM ;N ;Jq is called a propagation state and pM ;N ;Dq a
conflict state.

The propagation phase includes the Decide, Propagate, and Conflict rules.
As in DPLL [3], the model assumption is extended with new literals as long
as the model assumption does not falsify a clause. New literals are added
to the model assumption in two ways. With the Decide rule an arbitrary
undefined literal is chosen. This is always possible. However, it has the
drawback that the calculus possibly needs to return to this state and repeat
with the negation of the literal. Hence, in general the worst case run time is
exponential.

The aim of Boolean constraint propagation (BCP), included in the calculus
with the Propagate rule, is to avoid decisions by instead adding literals whose

14

truth value is forced under the current state. If a clause is almost falsified,
i.e., all its literals except one are false, whereas the last is still undefined,
this literal is set to true. As otherwise the clause would be conflicting in
any satisfying extension of the model assumption, this particular literal has
only one possible assignment and ,therefore, can be added to the model
assumption.

This continues until there are no more undefined literals or some clause in
N is falsified. Then the Conflict rule applies; entering the conflict phase. The
conflict phase consists of the Fail, Explain, Backtrack, and Continue rules.

The purpose of the conflict phase is now analyzing the conflict. It tries
to find the earliest state to backtrack the model assumption to and creates
a learnt clause. If there are no decisions in the model assumption, the Fail
rule transitions into the fail state. As this means the current conflict is a
direct consequence of N , N is unsatisfiable. Otherwise, the calculus uses the
Explain or Backtrack rule to analyze the conflict depending on the top literal
of the model assumption.

If the literal is not part of the conflict, i.e., assigns one of the conflict literals
to false, the Backtrack rule simply removes it. This could be either a decision
or propagation literal. As it does not affect the conflict, its truth value, and
its appearance in the model assumption, is irrelevant. In the opposite case
that the literal is relevant to the conflict the next step depends on whether
the literal is a propagation or a decision. In the former case the conflict
clause is resolved with the justification of the propagation literal, i.e., the
clause that propagated the literal, and the result becomes the new conflict
clause. The resolution of two clauses on an atom is their union minus the
atom itself and any duplicates.

Repeating this step replaces the propagation literals in the conflict by the
literals responsible for their propagation. More informally, backtracking the
propagate steps in the model assumptions explains the conflict. As all literals
in the conflict clause and the justification except for the propagation literal
are falsified, the new conflict clause is again falsified. The purpose of this is
to identify decisions that are not relevant to the conflict; therefore, exploring
the second branch of those decision can be avoided.

The conflict analysis ends at the first relevant decision literal. At this
point, the Continue rule adds the generated conflict clause to N as a new
learnt clause. As it is still falsified, the clause is unit after backtracking the
decision and therefore, immediately propagates the decision literal’s negation.
Furthermore, the resolvent is at each step implied by the two parent clauses,
which are either a resolvent themselves or an element of N . Hence, the new
clause is implied by N and therefore, does not change the satisfiability of N .

15

With this the conflict is resolved, and the calculus returns to the propagation
phase to explore the second branch of the backtracked decision.

The calculus continues alternating between the two phases until either a
satisfying model is found or the failed state is reached.

2.2.1 Example

In figure 2.2, I give an example, where the CDCL calculus is used to verify
the unsatisfiability of the CNF formula l1 _ l2, l1 _ l2, l1 _ l2, l1 _ l2.

ñCDCL (ε ; N ; J) start state
ñCDCL (lJ1 ; N ; J) Decide l1
ñCDCL (lJ1 lC2 ; N ; J) C propagates l2
ñCDCL (lJ1 lC2 ; N ; l1 _ l2) D is a conflict clause

ñCDCL (lJ1 ; N ; l1) C explains l2

ñCDCL (l
l1
1 ; N Y tl1u ; J) Learn l1 and continue

ñCDCL (l
l1
1 lA2 ; N Y tl1u ; J) A propagates l2

ñCDCL (l
l1
1 lA2 ; N Y tl1u ; l1 _ l2) B is a conflict clause

ñCDCL (ε ; N Y tl1u ; K) Fail

Figure 2.2: Assume the CNF formula N :“ A^B^C^D, where A :“ l1_l2,
B :“ l1 _ l2, C :“ l1 _ l2 and D :“ l1 _ l2. The derivation
shows one way for CDCL to reach the fail state in this case:
As no other rule are applicable, the first step is Decide which is
then followed by unit propagations that inevitably lead to two
conflicts. Analyzing the first conflict inverts the initial decision,
while the second conflict enables Fail.

2.3 Subsumption and Subsumption Resolution

Typically, CDCL solvers apply pre-processing in an attempt to simplify the
CNF formula and to make subsequent solving faster.

Let C and D be two distinct clauses in a CNF formula N , and C is a
subset of D. Then, any model M satisfying C automatically also satisfies D.
If M falsifies D, it also falsifies C. Hence, N and the simplified NztDu are
equivalent. This is called Subsumption, and in this situation C subsumes D.

Now assume C_ l and D_ l are two clauses in N , and again C is a subset
of D. Then, their resolvent C _ D “ D is a subset of D _ l. As adding
a resolvent of two clauses in N preserves equivalence and the now added D

16

subsumes D_ l, the new CNF formula NztD_ lu Y tDu is equivalent to N .
With this, the literal l was effectively removed. This is called Subsumption
Resolution, and I will also refer to it as Reduction and say that C_ l reduces
literal l in D _ l.

In the special case that C is empty and l is a unit clause, the condition
C Ď D holds for any clause D _ l. So the unit clause l reduces l in every
clause in which l occurs, while it subsumes all clauses containing l. The
result of Subsumption and Subsumption resolution combined are in this case
the same as applying unit propagation.

Let us now consider again the CNF formula l1_l2, l1_l2, l1_l2, l1_l2. Due
to lack of unit clauses, unit propagation can not be applied, and CDCL is
forced to start with the decision rule. However, l1_l2 reduces l2 in l1_l2, and
the resulting clause l1 subsumes both parent clauses. Continuing to apply
Subsumption Resolution on l1_ l2 and l1_ l2 and on the two reduced clauses
l1 and l1 results in the empty clause. Hence, we conclude unsatisfiability
without ever applying the decision rule.

Therefore, Subsumption Resolution is a generalization of and more pow-
erful than unit propagation.

17

3 The RCDCL Calculus

As I have just described the underlying CDCL calculus in the previous
chapter, I will now explain how I extend it with Subsumption resolution
to RCDCL.

3.1 States

Definition 3.1.1 (States). A state pM ;N ; sq is a triple consisting of the
model assumption M , a set of propositional clauses N , and s which is J, K
or a sequence of conflict clauses O.

1. pε;N ;Jq is the start state.

2. pε;N ;Kq is the final state, where N is unsatisfiable.

3. pM ;N ;Jq is an intermediate propagation state.

4. pM ;N ;Oq is an intermediate conflict state.

Definition 3.1.2 (Model assumption M). Let l be a literal, and C,D are
clauses. The model assumption M is a sequence of literals of the following
types:

1. lJ is a decision literal.

2. lC is a propagation literal.

3. lCD is a reduced literal.

4. SC
D is a subsumption.

Mp :“ tl | lC PM or lJ PMu is the propositional model of M .

The superscript C is called the justification, whereas the subscript D de-
notes that something is specific to D. Hence, a reduced literal lCD describes
that C reduces literal l in D. A subsumption SC

D means that C subsumes D.

19

In a consistent Model assumption, both are uniquely defined by D. There-
fore, C will be sometimes omitted. The decision and propagation literals
have the same role as in standard CDCL.

Definition 3.1.3 (Conflict clauses). Let C and D be propositional clauses.
A conflict clause is a set containing three types of conflict literals:
Unmarked literals l, marked literals lD, and chosen literals l˚D,
where a chosen literal is also a marked literal.
Furthermore the following are defined:

1. CD :“ tlD | l P Cu marks the literals of C.

2. Cp :“ tl | l P C or lD P C or l˚D P Cu unmarks literals in C.

3. Cm and Cu are the sets of marked and unmarked literals in C.

In CDCL, the conflict clause fulfills two essential invariants.
First, it is entailed by the set of clauses N , and second, it is false under the
model assumption. In RCDCL, these invariants are generalized to lists of
conflict clauses. However, the second invariant is then too strong to prove.
Hence, it is weakened by requiring that only certain literals are false, namely,
marked literals. Which those are is specified by the RCDCL rules.

Throughout the process of analyzing a conflict, each reduced literal l in a

conflict clause needs to be resolved. This will require identifying which l
C

D in
the Model assumption marks its reduction. Therefore, the origin clause D is
used to mark conflict literals.

Chosen literals are the literals next in line to be resolved. While not
directly essential to the calculus, they are treated separately in the proof for
correctness and crucial for termination.

3.2 Semantics

Definition 3.2.1. Let M be a model assumption and C,D clauses.

1. If lJ PM , l
J
PM , lC PM or l

C
PM , then l is defined in M .

2. If lD PM , then the literal l P D is reduced under M .

3. If lD PM , then the conflict literal lD is reduced under M .

4. If l
J
PM , l

C
PM or l P D is reduced under M ,

then literal l is false in D under M .

20

5. If l
J
PM , l

C
PM or lD is reduced under M ,

then the conflict literal lD is false under M .

As the second invariant now only requires all marked literals in a conflict
clause to be false under M , I only define semantics for marked conflict literals.
For unmarked literals only their presence in a conflict clause is relevant, but
their truth value under M is not.

Definition 3.2.2 (MpCq). Let M be a model assumption and C a clause.
MpCq :“ tl P C | l is not false in C under Mu.

MpCq is how C would look if I used the subsumption resolution steps
tracked by M to reduce C. As the model assumption marks reductions
per clause, a literal’s truth-value can no longer be determined globally as in
CDCL. Instead, the truth-value of a literal also depends on the surrounding
clause.

Definition 3.2.3 (Satisfiability). Let M be a model assumption, and C,D
are clauses. A clause D is satisfied under M , denoted by M (D,
if SC

D PM or l PM1pDq, where M “M1l
JM2 or M “M1l

CM2.

Informally, a clause is satisfied if it is either subsumed or a literal that has
not been reduced is true. In Section 6.1 I will discuss subsumption and its
influence on this definition.

3.3 RCDCL Rules

3.3.1 The Propagation Phase

The calculus begins in the start state pε;N ;Jq in the Propagation phase,
where it decides the truth value of literals and propagates resulting conse-
quences. It stays in this phase until all literals have an assigned truth-value
and a Model is found or at least one clause in N becomes false, when it leaves
the phase with the Conflict rule.

Most rules in the propagation phase are the same as in CDCL with the
only difference that their conditions are adapted to the changed notations.
For example, instead of saying that a clause C is conflicting if it is false
under M , we write MpCq “ H, which denotes that all literals in C are either
reduced or false.

Only additions are the Reduction and the Subsumption rules. The Sub-
sumption Rule is not essential to the calculus. However, its condition is
so close and even a bit simpler than the condition for Reduction that while

21

Unit Propagation
pM ;N Y tCu;Jq ñRCDCL pMlC ;N Y tCu;Jq,
where MpCq “ tlu and M * C.

Reduction
pM ;N Y tC,Du;Jq ñRCDCL pMlCD;N Y tC,Du;Jq,
where MpCq “ C 1 _ l, MpDq “ D1 _ l, C 1 Ď D1, M * C, and M * D.

Subsumption
pM ;N Y tC,Du;Jq ñRCDCL pMSC

D;N Y tC,Du;Jq,
where MpCq ĎMpDq, M * C, and M * D.

Decide
pM ;N ;Jq ñRCDCL pMlJ;N ;Jq,
where l is undefined in M .

Conflict
pM ;N Y tCu;Jq ñRCDCL pM ;N Y tCu;CCq,
where MpCq “ H.

Figure 3.1: The RCDCL Calculus - Propagation Phase

looking for reductions will inevitably also find subsumptions. Both have con-
ditions as one would expect modulo the model assumption, but instead of
changing the clause set they add a respective entry to the model assumption.
This way backtracking undoes these operations quickly without affecting N .

3.3.2 The Conflict Phase

In the Conflict Phase, the calculus explicitly describes how conflicts and
backtracking are handled and how the learnt clause is derived (Figure 3.2).

If there is a conflict but no decisions to backtrack, the calculus transitions
into the fail state pε;N ;Kq. Otherwise, it eventually returns to the propaga-
tion phase by adding a new clause to the CNF formula, which immediately
forces a unit propagation.

The main difference compared to CDCL is the addition of the Explain
Reduction Rule. Also, instead of explaining a propagation literal in a single
step, the process is split into two parts: The Explain Propagation Rule,
where the propagation literal’s justification is added as a conflict clause, and
the Resolution Rule, where the two top conflict clauses are replaced by their

22

Explain Propagation
pMlC_l;N ;D1 _ lDq ñRCDCL pMlC_l;N ;D1 _ l

˚

D, CC_l _ lq,
where no lE P D

1 _ lD is reduced under M .

Explain Reduction
pM1l

C_l
D M2;N ;O,D1_ lDq ñRCDCL pM1l

C_l
D M2;N ;O,D1_ l

˚

D, FC_l_G_ lq,
where F :“ CzM1pDq, G :“ C XM1pDq, and no lE P D

1 is reduced under
M1, i.e., lD is the “left-most” reduced literal in the top conflict clause.

Resolution
pM ;N ;O,D1 _ l

˚

D, Cq ñRCDCL pM ;N ;O,D1 _ Cmq,
where no lE P C is reduced under M .

Backtrack1
pMlC

1

D ;N ;Cq ñRCDCL pM ;N ;Cq,
where lD R C.

Backtrack2
pMlC

1

;N ;Cq ñRCDCL pM ;N ;Cq,
where lD R C.

Backtrack3
pMlJ;N ;Cq ñRCDCL pM ;N ;Cq,
where lD R C.

Backtrack4
pMSD

C1 ;N ;Cq ñRCDCL pM ;N ;Cq.

Continue
pMl

J
;N ;C _ lDq ñRCDCL pMlCp_l;N Y tCp _ lu;Jq,

where no lE P C _ lD is reduced under M .

Fail
pM ;N ;Cq ñRCDCL pε;N ;Kq, where no lJ occurs in M .

Figure 3.2: The RCDCL Calculus - Conflict Phase

23

resolvent. The Explain Reduction Rule has a similar effect to the Explain
Propagation Rule as it adds a reduction’s justification to the conflict clause
list.

This approach is comparable to the way a stack machine evaluates arith-
metic expression, where resolution is a binary operation and both Explain
rules are load operations. Following this analogy, the extension to lists of
conflict clauses instead of a single slot as in CDCL is necessary because res-
olution is no longer associative with the addition of reductions.

For the initial conflict clause, all reduced literals need to be resolved. Oth-
erwise, the learnt clause might not be productive because the literals that
are reduced in a conflict clause are not reduced under M in the learnt clause.

Resolving a reduced literal requires at least the literals to be present in
the reduced clause that were present when the reduction was added to the
model assumption. Therefore, resolution cannot act in an arbitrary order,
but the literal which was reduced first has to be always chosen next.

However, it is not necessary to resolve all reduced literals in the conflict
clauses. Whereas necessary for the initial conflict clause and the justification
of a propagation, for the justification of a reduced literal, only those reduced
literals are required to be resolved that were false when the reduction was
added. To achieve this separation, literals in conflict clauses are marked, and
only marked reduced literals need to be resolved. I compute an even smaller
sufficient subset by only marking literals which were also not undefined in
the reduced clause, i.e., not in M1pDq.

While the number of steps done in the Conflict Phase is exponential in the
length of the model assumption, the implementation has a linear run time
by using dynamic programming. This is possible because the conflict clause
added by explaining a reduced literal only depends on the model assumption
and the two involved clauses, but not its context in the conflict clause list.
Therefore, it is not necessary to resolve a reduced literal more than once.

3.4 Non-linear Conflict Analysis

Let us return to the example in Figure 2.2, but we now use the RCDCL
calculus instead (Figure 3.3). In the first step the clause A reduces l2 in
B starting unit propagation eventually leading to a conflict in clause D.
Normally, this is enough to reach the fail state. However, this is ignored here
to show conflict analysis instead.

The first resolution on literal l2 is the same as it were in CDCL except it is
done in two separate steps. Afterward, resolving on l1 though is interrupted
by the reduced conflict literal l2B, which requires to be resolved beforehand.

24

ñRCDCL (ε ;N ; J) start state

ñRCDCL (l2
A
B ;N ; J) A reduces l2 in B

ñRCDCL (l2
A
B l1

B ;N ; J) B propagates l1
ñRCDCL (l2

A
B l1

B l2
C ;N ; J) C propagates l2

ñRCDCL (l2
A
B l1

B l2
C ;N ; l1D _ l2D) D is a conflict

ñRCDCL (l2
A
B l1

B ;N ; l1D _ l2
˚

D; l1 _ l2) C explains l2
ñRCDCL (l2

A
B l1

B ;N ; l1D) Resolution

ñRCDCL (l2
A
B ;N ; l1

˚

D; l1 _ l2B) B explains l1
ñRCDCL (l2

A
B ;N ; l1

˚

D; l1 _ l2
˚

B; l1 _ l2) A explains l2B
ñRCDCL (l2

A
B ;N ; l1

˚

D; l1) Resolution
ñRCDCL (l2

A
B ;N ; K) Resolution

ñRCDCL (ε ;N ; K) Fail

Figure 3.3: An RCDCL derivation of the CNF formula N :“ A^B^C^D,
where A :“ l1 _ l2, B :“ l1 _ l2, C :“ l1 _ l2, and D :“ l1 _ l2.

As its explanation clause A does not add any more reduced conflict literals,
the remaining resolutions can then be completed successively to derive the
empty clause.

l1 _ l2 l1 _ l2

l1

l1 _ l2 l1 _ l2

l1

K

Figure 3.4: Derivation of the empty clause in Figure 3.3.

The tree structure of the resolution is shown in Figure 3.4. The interrup-
tion by the reduced conflict literal creates a separate branch in the resolution.
In CDCL on the other hand, this never occurs within an analysis of a single
conflict. A learnt clause can always be derived by a sequence of resolutions,
where the intermediate resolvent is resolved with each clause involved in the
conflict in the order given by the model assumption.

However, this is not possible when using subsumption resolution. Trying
the same as in CDCL leads to an undesired resolvent instead (Figure 3.5).
In this case no linear sequence of resolutions is even possible.

Therefore, it is necessary for RCDCL to create these non-linear resolution
trees during conflict analysis. I decided to solve this problem using a stack
of conflict clauses, as is describe in the rules of RCDCL.

25

l1 _ l2

l1 _ l2

l1 _ l2 l1 _ l2

l1

l2

l1 ‰ K

Figure 3.5: Incorrect Derivation strictly following the model assumption

26

4 Properties of RCDCL

In the following chapters, many lemmas will be proven by induction over
the length of a derivation from the start state to some intermediate state.
For simplicity and readability, these proofs will be separately shown for each
lemma. However, this will make it seem as though some proofs have circular
dependencies. Therefore, it is necessary to consider that in a formal proof all
affected lemmas would be proven in parallel, where the circularity is solved
by using the strengthened inductive hypothesis.

Furthermore, in the following inductive proofs, cases will be skipped for
either of two reasons: Either the rule is not applicable or it does not change
any parameters of the proof. In the latter case, it can be immediately closed
using the inductive hypothesis.

4.1 Consistency of the Model Assumption

The Consistency of the Model assumption M , defined and proven as invari-
ants in the following three lemmas, consists of two aspects.

The first is a generalization of the CDCL consistency that the Model as-
sumption does not contain conflicting assignments, i.e., a literal being both
true and false at once. Reduced literals add complexity to the matter as now
a clause specific literal can have conflicting values. A literal can be reduced
in a clause and is then considered false in this clause, but can still become
true in all other clauses by propagation or decision. Hence, the definition of
satisfiability excludes reduced literals from making a clause true.

Secondly, consistency means that the conditions that were holding when a
propagation, reduction, or subsumption was added to the model continue to
hold until they are again removed by backtracking, and especially when the
literals are involved in the analysis of a conflict.

The proofs are mostly trivial, even in the cases which are involved. Only
exception is the consistency of the propagation literal added by the Continue
Rule, where we anticipate the second main invariant to prove that the learnt
clause is indeed productive.

27

Lemma 4.1.1 (Consistency of M 1). Let pM ;N ; sq be a state reachable from
pε;N 1;Jq.

1. If M :“M1l
C

DM2, then lD is not false under M1.

2. If M :“M1l
JM2 or M :“M1l

CM2, then l is undefined in M1.

3. Mp contains no complementary literals.

Proof. (1) By induction on the length of the derivation.

Case “Reduction” :
If M2 is empty, then by construction M1pDq “ D1 _ l and M1 * C. If lD
were false under M1, then l RM1pDq. Therefore, lD is not false under M1.
Otherwise, by inductive hypothesis.

(2) By induction on the length of the derivation.

Case “Unit Propagation” :
If M2 is empty, then by construction M1pCq “ tlu and M1 * C. Hence, l is
not false in C and neither is lJ P M1 nor lC

1

P M1 as this would satisfy the
C. Therefore, l is undefined in M1. Otherwise, by inductive hypothesis.

Case “Decide” :
If M2 is empty, then by construction l is undefined in M1.
Otherwise, by inductive hypothesis.

Case “Continue” :
If M2 is empty, then by inductive hypothesis on the previous state

pM1l
J
, NztCu, Cq, l is undefined in M1. Otherwise, by inductive hypothesis.

(3) Assume there are complementary literals l and l in Mp.

W.l.o.g. let M “ M1 l
JM2 l

J
M3. By the result of (2) l is undefined in

M1l
JM2. Contradiction. Therefore, Mp contains no complementary literals.

Lemma 4.1.2 (Consistency of M 2). Let pM1l
C
DM2;N ; sq be a state reachable

from pε;N 1;Jq. Then, M1pCqztlu ĎM1pDqztlu.

Proof. By induction on the length of the derivation.

Case “Reduction” :
If M2 is empty, then M1pCqztlu ĎM1pDqztlu holds by construction. Other-
wise, by inductive hypothesis.

28

Lemma 4.1.3 (Consistency of M 3). Let pMlC_l;N ; sq be a state reachable
from pε;N 1;Jq. Then, MpC _ lq “ tlu.

Proof. By induction on the length of the derivation.

Case “Unit Propagation” :
MpC _ lq “ tlu holds by construction.

Case “Continue” :
By assumption, the previous state was pMl

J
;N ;C _ lDq. By lemma 4.1.1

l
J
R M and l

C1

R M . Additionally, l
C1

Cp_l R M by construction. Hence, l is
not false under M ; therefore, l PMpCp _ lq.
Let l1 P Cp _ l and l1 ­“ l. By lemma 4.2.1 there is an l1E P C _ lD. By

invariant 2 (lemma 4.3.3) l1E is false under Ml
J

. Thus, l1E is false under M
because l1 ­“ l. Therefore, l1 RMpCp _ lq and MpCp _ lq “ tlu.

As mentioned at the beginning of the chapter, this is where the circular
reasoning appears. In the “Continue” case we use lemma 4.3.3, which itself
requires this lemma. However, with the strengthened inductive hypothesis
the result of lemma 4.3.3 can be used on any previous states in the derivation,
as is the case here.

4.2 Consistency of the Conflict Clauses

The consistency of the list of conflict clauses O is the counterpart to the
consistency of M . The following five lemmas are the setup for the two main
invariants.

The first lemma proves that the bottom conflict clause, which is the actual
conflict clause and at the end becomes the learnt clause, is fully marked as
mentioned before. This was already used in the previous lemma and will
again become useful to prove the correctness of the fail state.

The second lemma states that any reduced literals in a conflict clause share
the same origin. In particular, resolution does not add any other reduced
literals due to its restriction.

In the third and fifth lemma consistency again means that two conditions
that held when the Explain Reduction Rule was applied continue to hold until
the clause is used by the Resolution Rule: First, there is still no reduced literal
“left” of the chosen literal, and second, the unmarked literals in a conflict
clause contain the counterpart of the chosen literal and the rest are a subset
of its preceding clause.

29

Lastly, the fourth and biggest lemma essentially proves the correctness
of the Explain Reduction Rule. It shows that for each marked reduction
literal in any conflict clause, its origin clause at the time of the reduction is
a subset of the current conflict clause. This tells us that each reduced literal
can always be resolved out of the conflict clause by resolution with the same
clause that reduced it in its original clause.

Lemma 4.2.1 (Consistency of O 1). Let pM ;N ;C0, Oq be a state reachable
from pε;N 1;Jq. Then, all literals in C0 are marked.

Proof. By induction on the length of the derivation.

Case “Conflict” :
By assumption, C0 “ CC and O “ H.
By construction, all literals in CC are marked.

Case “Resolution” :
By assumption, C0, O “ O1, D1 _ Cm.

If O1 is empty, then C0 “ D1 _Cm. As D1 Ď D1 _ l
˚

D, all literals in D1 are
marked by the inductive hypothesis. By definition, Cm only contains marked
literals, too. Therefore, all literals in D1 _ Cm are marked.

If O1 is not empty, the proof is closed by the inductive hypothesis as C0

does not change.

Lemma 4.2.2 (Consistency of O 2). Let pM ;N ;Oq be a state reachable from
pε;N 1;Jq. If for some C P O both lD1 P C and l1D2

P C are reduced under M ,
then D1 “ D2.

Proof. By induction on the length of the derivation.

Case “Conflict” :
By assumption, O “ CC . By construction, for all lD1 P CC and l1D2

P CC ,
D1 “ C “ D2.

Case “Explain Propagation” :
By assumption, O “ D1_ l

˚

D, CC_l_ l. By the inductive hypothesis the claim
is only left to show for CC_l _ l. Let l1D1

P CC_l _ l and l2D2
P CC_l _ l. By

construction, D1 “ C _ l “ D2.

Case “Explain Reduction” :
By assumption, O “ O1, D1 _ l

˚

D, FC_l _G_ l. By the inductive hypothesis
the claim is only left to show for FC_l _ G _ l. Let l1D1

P FC_l _ G _ l and

30

l2D2
P FC_l _G_ l. By construction, D1 “ C _ l “ D2.

Case “Resolution” :
By assumption, O “ O1, D1 _ Cm. By the inductive hypothesis the claim
is only left to show for D1 _ Cm. Let l1D1

P D1 _ Cm and l2D2
P D1 _ Cm

be reduced under M . By assumption, Cm contains no literals reduced un-
der M . Hence, l1D1

, l2D2
P D1 Ă D1_l˚D. By the inductive hypothesis D1 “ D2.

Case “Backtrack1-4” :
By assumption, O “ C. Let l1D1

P C and l2D2
P C be reduced under M . By

construction, l1D1
and l2D2

are also reduced under M˚, where ˚ is lC
1

D , lC
1

, lJ

or SC1

D respectively. By the inductive hypothesis D1 “ D2.

Lemma 4.2.3 (Consistency of O 3). Let pM ;N ;O1, D
1 _ l˚D, O2q be a state

reachable from pε;N 1;Jq. If l1E P D
1 is reduced under a prefix M1 of M , then

lD is false under M1 and D “ E.

Proof. By induction on the length of the derivation.

Case “Explain Propagation” :
By assumption, O “ D1 _ l

˚

D, CC_l _ l and no literal l1E P D
1 _ lD is reduced

under M . Consequently, no literal is reduced under any subset of M .

Case “Explain Reduction” :
By assumption, O “ O1, D1 _ l

˚

D, FC_l _ G _ l and M “ M1l
C_l
D M2. By

the inductive hypothesis, the claim is only left to show for D1. Let l1E P D
1

be reduced under the prefix M3. By construction, l1E is not reduced under
M1. Hence, M1l

C_l
D has to be a prefix of M3 as otherwise consistency of M

(lemma 4.1.1) were violated. Therefore, lD is reduced under M3.
As both l1E P D

1 Ď D1 _ l
˚

D and lD P D
1 _ l

˚

D are reduced under M , E “ D
by lemma 4.2.2.

Lemma 4.2.4 (Consistency of O 4). Let pM ;N ;Oq be a state reachable from
pε;N 1;Jq. If the marked literal lD in conflict clauses C P O is reduced under
a prefix M1 of M , then M1pDq Ď Cp.

Proof. By induction on the length of the derivation.

Case “Conflict” :
By assumption, O “ CC . Let lC P CC be reduced under M1. M1pCq Ď
pCCqp “ C holds by definition.

31

Case “Explain Propagation” :
By assumption, O “ D1_ l

˚

D, CC_l_ l. By the inductive hypothesis the claim
is only left to show for CC_l _ l. Let l1C_l P CC_l _ l be reduced under M1.
M1pC _ lq Ď pCC_l _ lqp “ C _ l holds by definition.

Case “Explain Reduction” :
By assumption, O “ O1, D1 _ l

˚

D, FC_l _ G _ l. By the inductive hypothe-
sis the claim is only left to show for FC_l _ G _ l. Let l1C_l P FC_l _ G _ l
be reduced under M1. M1pC_lq Ď pFC_l_G_lqp “ C_l holds by definition.

Case “Resolution” :
By assumption, O “ O1, D1_Cm and the previous state was pM ;N ;O1, D1_
l˚D, Cq. By the inductive hypothesis the claim is only left to show for D1_Cm.
Let l1E P D

1 _ Cm be reduced under M1. Use case distinction on D1 _ Cm.

In the first case l1E P D
1 Ď D1 _ l˚D. Thus, by the inductive hypothesis

M1pEq Ď pD1 _ l˚Dqp “ D1p _ l. By lemma 4.2.3 lD is false under M1 and
D “ E. Hence, l RM1pEq and M1pEq Ď D1p Ď pD

1 _ Cmqp.

In the second case l1E P C
m Ď C. We have as an assumption that no literal

in C is reduced under M . This contradicts with l1E being reduced under
M1 ĎM .

Case “Backtrack1-4” :
By assumption, O “ C. Let lD P C be reduced under the prefix M1 of
M . M Ď M˚, where ˚ is lC

1

D1 , l
C1 , lJ or SC1

D1 respectively. Therefore, by the
inductive hypothesis M1pDq Ď Cp.

Lemma 4.2.5 (Consistency of O 5). Let pM ;N ;O1, D
1_l

˚

D, C,O2q be a state
reachable from pε;N 1;Jq. Then, Cu “ C 1 _ l and C 1 Ď D1p.

Proof. By induction on the length of the derivation.

Case “Explain Propagation” :
By construction O1 and O2 are empty and Cu “ tlu. Therefore, C 1 “ H Ď D.

Case “Explain Reduction” :
If O2 is empty, then by construction the previous state was pM1l

C_l
D M2;N ;O,

D1_lDq and pC_lqu “ pCXM1pDqq_l. By lemma 4.2.4 M1l
C_l
D pDq Ď D1p_l

and then by definition, M1pDq Ď D1p _ l.

Therefore, C 1 “ pC XM1pDqq ĎM1pDqztlu Ď D1p.

32

Otherwise, the claim follows from the inductive hypothesis.

Case “Resolution” :
If O2 is empty, then by construction l

˚

D is marked and Cm only contains
marked literals. Hence, pD1 _ l

˚

Dq
u “ pD1 _ Cmqu. Therefore, the claim

follows from the inductive hypothesis.
Otherwise, the claim follows from the inductive hypothesis.

4.3 Correctness of the Conflict Analysis

The first invariant has a similar counterpart for CDCL: Every conflict clause
in O is entailed by the clause set N . This allows adding the resolvent as a
new learnt clause without changing the satisfiability of N . The proof simply
states that every conflict clause in the list is either an actual member of N
or a resolvent of two conflict clauses.

Lemma 4.3.1 (Invariant 1). Let pM ;N ;Oq be a state reachable from pε;N 1;Jq.
Then, N (Cp for all clauses C P O.

Proof. By induction on the length of the derivation.

Case “Conflict” :
By assumption, O “ CC and pCCqp “ C P N . Hence, N (pCCqp.

Case “Explain Propagation” :
By assumption, C _ l P N . Hence, N (C _ l. By inductive hypothesis
N (pD1 _ lDqp. Therefore, N (C 1p for all C 1 P D1 _ lD, CC_l _ l.

Case “Explain Reduction” :
By assumption, O “ O1, D1_l

˚

D, FC_l_G_l and pFC_l_G_lqp “ C _ l P N .
Hence, N (pFC_l _ G _ lqp. By inductive hypothesis N (C 1p for all

C 1 P O1, D _ lD. Therefore, N (C 1p for all C 1 P O.

Case “Resolution” :
By inductive hypothesis N (C 1p for all C 1 P O,D1 _ l

˚

D, C. By lemma 4.2.5,

Cu “ C 1_l and C 1 Ď D1p. As hence N (D1p_l and N (Cp “ pC
m_C 1_lqp,

N (D1p_C
m
p “ pD

1_Cmqp follows by resolution. Therefore, N (C 1p for all
C 1 P O,D1 _ Cm.

The second invariant shows that every marked literal in a conflict clause is
false under M . This invariant was already mentioned several times and even

33

used once in a preceding lemma, where it was essential in proving correctness
of clause learning. Together with lemma 4.2.1 it is also used in proving that
the fail state indeed indicates unsatisfiability.

Proving the invariant requires an additional stronger lemma which states
that marked literals are not only false under M but are already false under
a prefix of M . This prefix corresponds to the state of the model assumption
when the reduction of the preceding chosen literal was added.

This lemma also indicates that this relevant prefix of M is getting strictly
smaller the closer we get to the top of the conflict clause list. Thereby, we
ensure that there are no cyclic dependencies among reductions, and conse-
quently, the length of the list is bounded by the length of M . I will use this
property again in the termination proof.

Lemma 4.3.2 (Invariant 2a). Let pM ;N ;O1, D
1_l˚D, C,O2q be a state reach-

able from pε;N 1;Jq. There is a prefix M1 of M such that lD is not false under
M1, whereas l1E is false under M1 for all l1E P C

m.

Proof. By induction on the length of the derivation.

Case “Explain Propagation” :
By assumption O “ D1 _ l

˚

D, CC_l _ l, M “ M1l
C_l and lD is not reduced

under M1. Assume lD is false under M1. Then, either lJ, lC
1

or lC
1

D are in
M1. The first two cases contradict consistency of M1l

C_l, while the third
contradicts the assumption.
Let l1C_l P CC_l. By lemma 4.1.3, M1pC _ lq “ tlu and consequently,
l1 RM1pC_lq. Hence, l1 P C _ l is false under M1 and l1C_l is false under M1.

Case “Explain Reduction” :
If O2 is not empty, this case is proven by the inductive hypothesis.
Otherwise, by assumption O “ O1, D1_ l

˚

D, FC_l_G_ l and M “M1l
C_l
D M2.

By consistency of M , lD is not false under M1.
By lemma 4.1.2, M1pC _ lqztlu Ď M1pDqztlu and thus, M1pC _ lq _ l Ď
M1pDq _ l. Hence, F “ CzM1pDq “ pC _ lqzpM1pDq _ lq Ď
pC _ lqzpM1pC _ lq _ lq “ pC _ lqzM1pC _ lq. By the inductive hypothesis
it is only left to show that l1C_l is false under M1 for all l1C_l P FC_l “ Cm.
Let l1C_l P FC_l. Consequently, l1 R M1pC _ lq and hence, l1 P C _ l is false
under M1. Therefore, l1C_l is false under M1.

Case “Resolution” :
If O2 is not empty, this case is proven by the inductive hypothesis.
Otherwise, by assumption O “ O1, D11_ l1

˚
D1
, D12_C

m and the previous state
is pM ;N ;O1, D11 _ l1

˚
D1
, D12 _ l2

˚
D2
, Cq.

34

By the inductive hypothesis, there are two prefixes M1 and M2 of M such
that l1D1

is not false under M1 and l2D2
is false under M1, but is not false

under M2. Hence, M2 is a prefix of M1 as otherwise consistency of M is
violated (lemma 4.1.1).

Let lE P D
1
2 _ C

m. If lE P D
1
2, then by the inductive hypothesis lE is false

under M1. If lE P C
m, then by the inductive hypothesis lE is false under M2

and under M1 as well.

Lemma 4.3.3 (Invariant 2). Let pM ;N ;Oq be a state reachable from pε;N 1;Jq.
All marked literals lD in clauses of O are false under M .

Proof. By induction on the length of the derivation.

Case “Conflict” :
By assumption, MpCq “ H. Hence, l is false under M for all l P C.

Case “Explain Propagation” :
By assumption, O “ D _ l

˚

D, CC_l _ l.
By the inductive hypothesis the claim is only left to show for CC_l _ l. Let
l1C_l P CC_l. By lemma 4.3.2 l1C_l is false under some M1 ĎM .

Case “Explain Reduction” :
By assumption, O “ O1, D1 _ l

˚

D, FC_l _G_ l.
By the inductive hypothesis the claim is only left to show for FC_l _G _ l.
Let l1C_l P FC_l. By lemma 4.3.2 l1C_l is false under some M1 ĎM .

Case “Resolution” :
By assumption, O “ O1, D1_Cm. By the inductive hypothesis it is only left
to show that lE is false under M for all lE P D

1 _ Cm. Let lE P D
1 _ Cm.

Use case distinction on D1 _ Cm.
In the first case lE P D

1 Ď D1 _ l1
˚

D. By the inductive hypothesis lE is false.
In the second case lE P C

m Ď C. Again, by the inductive hypothesis lE is
false.

Case “Backtrack1” :
By assumption, O “ C and lD R C. Let l1D1 P C. By the inductive hypothesis
l1D1 is false under MlC

1

D . Hence, either l1D1 is false under M or l1D1 “ lD. In the
first case we are done. In the second we have a contradiction.

Case “Backtrack2-3” :
By assumption, O “ C. Let l1D P C. By the inductive hypothesis l1D is false
under M˚, where ˚ is lC

1

or lJ respectively. Hence, either l1D is false under

35

M or l1 “ l.
In the first case we are done. In the second we have a contradiction as by
assumption lD R C.

Case “Backtrack4” :
By assumption, O “ C and lD R C. Let l1D1 P C. By the inductive hypothesis
l1D1 is false under MSC1

D . Hence, l1D1 is false under M .

4.4 Model Construction

In CDCL a full conflict-free model assumption can immediately be used as
a model to prove satisfiability. In RCDCL however, M now also contains
reduced literals and subsumptions that have to be filtered out first. The
intuition is that what is then left, namely Mp, is a model.

Without subsumption this would be rather simple as reduced literals can
only make literals be false, but never satisfy a clause by themselves. There-
fore, reduced literals in M can be simply ignored.

With subsumptions, however, some clauses might be considered satisfied
only due to being subsumed despite having no literal set to true. Therefore,
in this section this possibility will be excluded following the simple intuition
that for every subsumed clause, there exists a subsuming clause which is
itself not subsumed, but satisfied by a literal set to true. This literal is then
true in the subsumed clause as well.

The proof consists of three parts:
First, I show that for every subsumed clause there exists a subsuming, but

itself not subsumed, clause by defining a termination relation between sub-
suming and subsumed clauses. Similarly to lemma 4.3.2 for reduced literals,
I prove that there are no cycles of clauses subsuming each other.

Second, the monotonicity of M in relation to satisfied clauses is defined.
This means that once a clause becomes satisfied it stays satisfied, and in
particular, if for a clause C and some prefix M1 of M a literal in M1pCq is
true, M2pCq contains this literal for any prefix M2 of M .

Lastly, using induction on the termination relation combined with the
monotonicity result, I will show that the satisfying literal in the subsuming
clause is actually one of the literals that both clauses share. Hence, the
subsumed clause is also satisfied by a true literal.

Definition 4.4.1 (Subsumption relationăM). Let M be a model assumption,
C and D are clauses. Define D ăM C if SD

C PM .

36

Definition 4.4.2 (Termination relation ăt
M). Let M be a model assumption,

M1 and M2 are prefixes of M , C and D are clauses.
Define pM1, Dq ă

t
M pM2, Cq if

1. M1 “M2S
D
C , i.e., pM2S

D
C , Dq ă

t
M pM2, Cq or

2. M1 “M2M
1, M 1 ‰ H, and C “ D , i.e., pM2M

1, Cq ăt
M pM2, Cq.

Lemma 4.4.1. If there is a chain C1 ąM C2 ąM ¨ ¨ ¨ ąM Cn, then there
are prefixes M1, . . . ,Mn of M with pM1, C1q ą

t
M pM2, C2q ą

t
M ¨ ¨ ¨ ąt

M

pMnS
Cn
Cn´1

, Cnq.

Proof. By induction on n.
In the base case n “ 2 and C1 ąM C2. By definition, M “M1S

C2
C1
M2.

Therefore, pM1, C1q ą
t
M pM1S

C2
C1
, C2q.

If n ą 2, then by the inductive hypothesis on n ´ 1, there are prefixes
M1, . . . ,Mn´1 ofM with pM1, C1q ą

t
M pM2, C2q ą

t
M ¨ ¨ ¨ ąt

M pMn´1S
Cn´1

Cn´2
, Cn´1q.

As Cn´1 ąM Cn, M “ MnS
Cn
Cn´1

M 1 by definition. Hence, pMn, Cn´1q ą
t
M

pMnS
Cn
Cn´1

, Cnq.

Assume MnS
Cn
Cn´1

is a prefix of Mn´1S
Cn´1

Cn´2
.

Then, by definition 3.2.3.2 Mn´1 (Cn´1. However, by construction Mn´1 *

Cn´1. Contradiction. Thus, Mn´1S
Cn´1

Cn´2
has to be a prefix of MnS

Cn
Cn´1

in-
stead.
If Mn´1S

Cn´1

Cn´2
“Mn, then pMn´1S

Cn´1

Cn´2
, Cn´1q ą

t
M pMnS

Cn
Cn´1

, Cnq.

Otherwise, pMn´1S
Cn´1

Cn´2
, Cn´1q ą

t
M pMn, Cn´1q ą

t
M pMnS

Cn
Cn´1

, Cnq.

Lemma 4.4.2 (Termination of ăM). The relation ăM is a termination re-
lation.

Proof. Assume there is an infinitely descending chain in ăM . Hence, by
lemma 4.4.1 there is also an infinitely descending chain in ăt

M . However ăt
M

is a terminating relation as each step increases the length of the first compo-
nent, which is bounded by the length of M . Therefore, ăM is a termination
relation.

Lemma 4.4.3 (Monotonicity). Let M be a model assumption, C and D are
clauses.

1. If l RM1pCq, then l RM1M2pCq.

2. If l PM1l
JpCq and M1l

JM2 is a prefix of M , then l PM1l
JM2pCq.

3. If l PM1l
DpCq and M1l

DM2 is a prefix of M , then l PM1l
DM2pCq.

37

4. If l PM1pCq, M1 (C, and M1M2l
J or M1M2l

D is a prefix of M ,
then l PM1M2pCq.

1. Proof. Let l R M1pCq. It follows by definition that l R C, l
J
P

M1 Ď M1M2, l
D
P M1 Ď M1M2 or l

D

C P M1 Ď M1M2. Therefore,
l RM1M2pCq.

2. Proof. Assume l R M1l
JM2pCq. By definition, l R C, l

J
P M1l

JM2,

l
D
P M1l

JM2 or l
D

C P M1l
JM2. l R C contradicts with l P M1l

JpCq.

l
J
P M1l

JM2 and l
D
P M1l

JM2 both contradict with the consistency

of M (lemma 4.1.1.2). Lastly, either l
D

C P M1l
J or l

D

C P M2. l
D

C P M1l
J

contradicts with l P M1l
JpCq, while l

D

C P M2 contradicts with the
consistency of M (lemma 4.1.1.1).

3. Proof. Analog.

4. Proof. By induction on the length of M2.
If M2 is empty, the conclusion is identical to the assumption.

Otherwise, let M2 “ l0M
1
2. If l0 “ l

J
or l0 “ l

D1

, then M would be

inconsistent (lemma 4.1.1.2). If l0 “ l
D1

C , then by construction M1 * C,
which contradicts with M1 (C. In all remaining cases l P M1l0pCq
and M1l0 (C. Hence, by the inductive hypothesis l P M1l0M

1
2pCq “

M1M2pCq.

Lemma 4.4.4. Let M be a model assumption, C and D are clauses. If either
M “ M1l

JM2 or M “ M1l
DM2, and l P M1pCq, then l P M 1pCq for every

prefix M 1 of M .

Proof. Let M 1 be a prefix of M and w.l.o.g. M “ M1l
JM2. Then, either

M 1 “ M1, M
1 is a prefix of M1 or M1 is a prefix of M 1. For M 1 “ M1

the conclusion is the same as the assumption l P M1pCq. If M 1 is a prefix
of M1, assume l R M 1pCq. By lemma 4.4.3.1 l R M1pCq contradicting the
assumption. If M1 is a prefix of M 1 and M1 ‰ M 1, then l P M1l

JpCq and
M 1 “M1l

JM3. Hence, by lemma 4.4.3.2 l PM1l
JM3pCq “M 1pCq.

Lemma 4.4.5. Let M be a model assumption, which satisfies the set of
clauses N and let C be a clause in N . There exists an l P Mp such that
l PM 1pCq for every prefix M 1 of M .

Proof. By induction on ăM .
By assumption M (C; hence, either SD

C PM or there is an l PM1pCq,
where M “M1l

JM2 or M “M1l
DM2.

38

In the second case let, w.l.o.g., M “ M1l
JM2 and l P M1pCq. Hence,

l PMp and by lemma 4.4.4 l PM 1pCq for every prefix M 1 of M .
If SD

C P M , then by construction M “ M1S
D
CM2 and M1pDq Ď M1pCq.

Because D ăM C, by the inductive hypothesis there is an l P Mp such that
l PM1pDq ĎM1pCq. From l PMp, it follows by definition that M “M3l

JM4

or M “ M3l
D1M4. W.l.o.g., let M “ M3l

JM4. Now, either lJ P M1 or
lJ PM2.
If lJ P M1, then also l P M3pCq as otherwise there is a contradiction using
lemma 4.4.3.1. Consequently, by lemma 4.4.4 l P M 1pCq for every prefix M 1

of M .
If lJ P M2, then M1S

D
C is a prefix of M3l

J, and additionally, l P M1S
D
C pCq

and M1S
D
C (C. Thus, l PM3pCq by lemma 4.4.3.4, and therefore, by lemma

4.4.4 l PM 1pCq for every prefix M 1 of M .

Corollary 4.4.6. Let M be a model assumption and N a set of clauses.
If M (N , then Mp (N .

Proof. Let M (N and C be an arbitrary clause in N . By lemma 4.4.5 there
exists an l PMp such that l PM 1pCq for every prefix M 1 of M . In particular,
l P εpCq “ C. Therefore, Mp (C.

4.5 Soundness

In this section I can finally prove the first big result: Soundness.
For the first part I already did most of the proof in the previous section,

i.e., for the final states of the calculus where all literals are defined but no
clause is conflicting the propositional part of M is a model of the initial set
of clauses.

For the second case, where the calculus reaches the fail state, I use another
lemma, which tells me that when the Fail Rule was applicable, the conflict
phase could have instead continued the conflict phase until the model as-
sumption is fully backtracked. As the bottom conflict clause has to be false
under M , this means that for an empty model assumption I derived the
empty clause. Hence, as the clause set entails the empty clause, it has to be
unsatisfiable.

Lemma 4.5.1 (Consistency of N). Let pM ;N ; sq be a state reachable from
pε;N 1;Jq. Then, N (N 1 and N 1 (N .

Proof. By induction on the length of the derivation.

39

Case “Continue” :
By the inductive hypothesis N (N 1 and N 1 (N . As N Ď N Y tCp _ lu,
N Y tCp _ lu (N (N 1. By lemma 4.3.1 N (Cp _ l. Hence, N 1 (N (

N Y tCp _ lu. Therefore, N Y tCp _ lu (N 1 and N 1 (N Y tCp _ lu.

Lemma 4.5.2 (Fail). Let pM ;N ;O,Cq be a state reachable from pε;N 1;Jq.
If no lJ occurs in M , a state pε;N ;C 1q is reachable.

Proof. By case analysis.
If there is an lD P C with lD PM , then “Explain Reduction” is applicable.
Otherwise, lD RM for all lD P C.
If O is not empty, i.e., O “ O1, D1, then “Resolution” is applicable.
Otherwise, O is empty.

If M “M 1l
C1

D , then lD R C; hence, “Backtrack1” is applicable.
If M “M 1SC1

D , then “Backtrack4” is applicable.

If M “M 1l
C1

and lD P C, then “Explain Propagation” is applicable.

If M “M 1l
C1

and lD R C, then “Backtrack2” is applicable.

If M “M 1l
J

, there is a contradiction.
If M is empty, then the current state is pε;N ;Cq.
Therefore, as backtracking without “Continue” terminates by lemma 4.7.3
and none of these rules change N , the state pε;N ;C 1q is reachable.

Theorem 4.5.3 (Soundness). .

1. Let pM ;N ;Jq be a final state reachable from pε;N 1;Jq.
N 1 is satisfiable, and Mp is a model of N 1.

2. Let pε;N ;Kq be a final state reachable from pε;N 1;Jq,
then N 1 is unsatisfiable.

1. Proof. Assume literal l is undefined in M , then “Decide” would be
applicable. Hence, all literals must be defined in a final state.
Let C be a clause in N . Then, MpCq ­“ H or M (C as otherwise
“Conflict” would be applicable.

If MpCq ­“ H, there is a literal l P C with l
J
R M , l

D
R M , and

l
D

C R M for any clause D. Therefore, M “ M1l
JM2 or M “ M1l

DM2

for some clause D as l is defined in M . Hence, by the contra position
of lemma 4.4.3.1 l P M1pCq and M (C. Therefore, M (N , and by
lemma 4.4.6 Mp (N . By lemma 4.1.1 Mp contains no complementary
literals. Therefore, Mp is a model of N and N 1 as N (N 1 by lemma
4.5.1.

40

2. Proof. If pε;N ;Kq is reachable, then in the previous step must have
been a state pM ;N ;Cq where no lJ occurs in M .
By lemma 4.5.2 a state pε;N ;C 1q is reachable from pM ;N ;Cq.
By lemma 4.3.3 there can be no marked literals in C 1 as the model
assumption is empty. However, by lemma 4.2.1 all literals in C 1 are
marked.
Hence, the clause C 1 is the empty clause. By lemma 4.3.1 N (C 1; thus,
N is unsatisfiable. Using lemma 4.5.1 N 1 is unsatisfiable as well.

4.6 Redundancy of Learnt Clauses

Next, I show two properties of learnt clauses that are not actually necessary
for correctness and termination. However, they directly correspond to prop-
erties of CDCL that are attributed to its efficiency. Hence, it is a reassuring
result that they carry over to RCDCL.

The first is redundancy. While every learnt clause is redundant in the
sense that it is already entailed by the clause set, it here means that the
learnt clause is not subsumed by an existing clause.

The second property simply states that a learnt clause is not a tautology,
i.e., does not contain complementary literals.

Theorem 4.6.1 (Redundancy). Assume “Decide” is only used if “Unit Prop-
agation” and “Conflict” are not applicable.

Let pMl
J

;N ;Dq be a state reachable from pε;N 1;Jq.
If “Continue” is applicable, then there is no C P N with C Ď Dp.

Proof. As “Continue” is applicable, D “ D1 _ l1E and lE R M for all lE P

D1_ l1E. Hence, by lemmas 4.2.1 and 4.3.3, l1
J
PM or l1

E
PM for all l1 P D1p

(cf. proof 4.1.3 Case “Continue”). Furthermore, by lemma 4.1.1 l is unde-
fined in M . Now, assume there is a clause C P N with C Ď Dp.
If l P C and l is false in C under M , then C is unsatisfiable under M .
If l P C and l is not false in C under M , then C is a unit clause under M .
If l R C, then C Ď D1p. Hence, C is unsatisfiable under M .
Thus, in all three cases either “Unit Propagation” or “Conflict” was applica-

ble when l
J

was added to the model assumption by “Decide”. Contradiction.
Therefore, there is no C P N with C Ď Dp.

Theorem 4.6.2 (Tautologies). Let pM ;N ;Dq be a state reachable from
pε;N 1;Jq. If “Continue” is applicable, then Dp is not a tautology.

Proof. As “Continue” is applicable, lE RM for all lE P D. Hence, by lemmas

4.2.1 and 4.3.3, l1
J
PM or l1

C1

PM for all l1 P Lp.

41

Now, assume Lp is a tautology, i.e., there are literals l and l in Dp.
Then, l PMp and l PMp, which contradicts lemma 4.1.1.3.
Therefore, Dp is not a tautology.

4.7 Termination

Lastly, in this section I talk about the termination of the calculus. The proof
is build on the intuition that the calculus cannot stay indefinitely in either the
propagation phase or the conflict phase, and that it can switch only finitely
many times between the two.

For the termination of the propagation phase, I first show that the length
of the model assumption is bounded. The given bound of n ` 3npn ` 1q,
however, should not be taken as a worst case estimation. Then, I argue that
every step reduces the distance to this bound.

For the termination of the conflict phase I use the aspect I already men-
tioned in lemma 4.3.2. Marked conflict literals are considered smaller if they
became false earlier, and additionally, a chosen literal is smaller than its nor-
mal counterpart. Consequently, conflict clauses are ordered by a multiset
ordering on their marked literals, and the whole conflict lists are lexico-
graphically ordered. Then, every step of the conflict phase either shortens
the Model assumption or makes the conflict clause list smaller.

Lastly, the two phases do not alternate infinitely. To show this, I split the
model assumption into its segments between decisions. With every iteration
from one Continue to the next, one of the segments becomes longer, while
the ones preceding it stay the same, or the model assumption becomes longer
as a whole.

Lemma 4.7.1 (Upper bound for M). Let N 1 be a set of non-tautologous
clauses, where no clause subsumes another, and n is the number of dis-
tinct propositional variables in N 1. Let pM ;N ; sq be a state reachable from
pε;N 1;Jq. The length of M is always smaller or equal to n` 3npn` 1q.

Proof. By lemma 4.1.1 each literal l can be defined only once in M , and for

all clauses C P N and literals l P C, at most lDC or l
D

C is in M . Furthermore,
a clause can be subsumed only once. Hence, the length of M can be at
most n ` ΣCPNplengthpCq ` 1q. For n propositional literals the length of a
non-tautologous clause is at most n, and there can be at most 3n distinct
non-tautologous clauses. As by the theorems 4.6.1 and 4.6.2 “Continue” does
not learn any subsumed or tautologous clauses, the size of N is at most 3n.
Therefore, lengthpMq ď n ` ΣCPNplengthpCq ` 1q ď n ` ΣCPNpn ` 1q ď
n` 3npn` 1q.

42

Definition 4.7.1 (Size-function f). Let pM,N, sq be a state.
Let n be the number of distinct propositional variables in N .
Then, fpMq “ n` 3npn` 1q ´ lengthpMq.

Definition 4.7.2 (ąS). Let pM,N, sq and pM 1, N 1, s1q be two states. Con-
sider a decomposition M0 ` lJ1 `M1 ` ... ` lJk `Mk of M (accordingly for
M 1). Then, pM,N, sq ąS pM

1, N 1, s1q if

1. fpM0q “ fpM 1
0q, ..., fpMi´1q “ fpM 1

i´1q, fpMiq ą fpM 1
iq

for some i ď k, k0 or

2. fpMjq “ fpM 1
jq for all 0 ď j ď k and fpMq ą fpM 1q or

3. M “M 1, s “ J and s1 ­“ J.

Definition 4.7.3 (ąO). Let pM,N,Oq and pM,N,O1q be two states.

1. Let lD, l
1
C be two conflict literals. Define lD ąL l

˚
D and l˚D ąL l

1
C

if M “M1M2 with l1C false in M1, while lD is not false in M1.

2. Let C and D be two conflict clauses. Define C ąCl D
as the multiset ordering of the transitive closure of ąL.

3. Define O ąO O
1 as the lexicographic ordering on ąCl.

Note: lD ą
˚
L l

1
C compares the left-most positions in M , where each literal

becomes false under M . Hence, a descending chain is linearly bounded by
the length of M . Therefore, ą˚L is a well-founded ordering.

Definition 4.7.4 (ąB). Let pM,N,Oq and pM 1, N 1, O1q be two states.
Define pM,N,Oq ąB pM

1, N 1, O1q if

1. lengthpMq ą lengthpM 1q or

2. M “M 1 and O ąO O
1.

Lemma 4.7.2 (Termination of Propagation). Let pM ;N ;Jq be a state reach-
able from pε;N 1;Jq. A derivation starting in pM ;N ;Jq either terminates
without using “Conflict” or reaches a state pM 1;N ;Cq after an application
of “Conflict”, where pM ;N ;Jq ąS pM

1;N ;Cq.

Proof. Let M0 ` l
J
1 `M1 ` ...` l

J
k `Mk be a decomposition of M .

By case analysis every rule-application decreases ąS and
reaches a new state pM 1;N ;Jq unless the rule was “Conflict”.

43

Case “Unit Propagation” :
By assumption M 1 “ MlC “ M0 ` lJ1 ` M1 ` ... ` lJk ` Mkl

C . Hence,
fpM0q “ fpM 1

0q, ..., fpMk´1q “ fpM 1
k´1q and fpMkq ą fpMkl

Cq “ fpM 1
kq.

Therefore, pM ;N ;Jq ąS pMlC ;N ;Jq.

Case “Reduction” :
By assumption M 1 “ MlCD “ M0 ` lJ1 ` M1 ` ... ` lJk ` Mkl

C
D. Hence,

fpM0q “ fpM 1
0q, ..., fpMk´1q “ fpM 1

k´1q and fpMkq ą fpMkl
C
Dq “ fpM 1

kq.
Therefore, pM ;N ;Jq ąS pMlCD;N ;Jq.

Case “Subsumption” :
By assumption M 1 “ MSC

D “ M0 ` lJ1 ` M1 ` ... ` lJk ` MkS
C
D. Hence,

fpM0q “ fpM 1
0q, ..., fpMk´1q “ fpM 1

k´1q and fpMkq ą fpMkS
C
Dq “ fpM 1

kq.
Therefore, pM ;N ;Jq ąS pMSC

D;N ;Jq.

Case “Decide” :
By assumption M 1 “ MlJ “ M0 ` lJ1 ` M1 ` ... ` lJk ` Mkl

J. Hence,
fpMjq “ fpM 1

jq for all 0 ď j ď k and fpMq ą fpMlJq “ fpM 1q.
Therefore, pM ;N ;Jq ąS pMlJ;N ;Jq.

Case “Conflict” :
By assumption M “M 1, s “ J and s1 “ CC .
Therefore, pM ;N ;Jq ąS pM ;N ;CCq.

Lemma 4.7.3 (Termination of Backtracking). Let pM ;N ;O1q be a state
reachable from pε;N 1;Jq. A derivation starting in pM ;N ;O1q either termi-
nates without using “Continue” or reaches a state pM0 l

D;N Y tDu;Jq after
an application of “Continue”, where M “M0M

2.

Proof. By case analysis every rule-application decreases ąB and reaches a
new state pM 1;N ;O2q with M “ M 1M2 unless the rule was “Continue” or
“Fail”.

Case “Explain Propagation” :
By assumption M “M 1, O1 “ D1 _ lD, and O2 “ D1 _ l

˚

D, CC_l _ l.
As lD ąL l

˚

D, D1 _ lD ąCl D
1 _ l

˚

D. Hence, O1 ąO O2, and
therefore, pM ;N ;O1q ąB pM

1;N ;O2q with M “M 1.

Case “Explain Reduction” :
By assumption M “M 1, O1 “ O,D1_ lD, and O2 “ O,D1_ l

˚

D, FC_l_G_ l.
As lD ąL l

˚

D, we have D1 _ lD ąCl D
1 _ l

˚

D. Hence, O1 ąO O2, and

44

therefore, pM ;N ;O1q ąB pM
1;N ;O2q with M “M 1.

Case “Resolution” :
By assumption M “M 1, O1 “ O,D1 _ l

˚

D, C, and O2 “ O,D1 _ Cm.
Let l1E P Cm Ď C. By lemma 4.3.2 there is a prefix M1 of M such that
lD is not false under M1 and l1E is false under M1. Hence, l

˚

D ąL l1E,
D1 _ l

˚

D ąCl D
1 _ Cm, and O1 ąO O2.

Therefore, pM ;N ;O1q ąB pM
1;N ;O2q with M “M 1.

Case “Backtrack1-4” :
By assumption M “M 1˚. Where ˚ is either lC

1

D , lC
1

, lJ or SC1

D respectively.
Therefore, pM 1˚;N ;O1q ąB pM

1;N ;O2q.

Case “Continue” :
By assumption M “M0 l

J and M 1 “M0 l
Cp_l.

Therefore, pM0 l
Cp_l;NYtCp_lu;Jq is a state after an application of Continue.

Case “Fail” :
The new state pε;N ;Kq is a final state.

Theorem 4.7.4 (Termination). Let pM ;N ;Jq be a state reachable from
pε;N 1;Jq. Every derivation starting from pM 1;N 1;Jq terminates.

Proof. I show that every derivation starting in pM ;N ;Jq either terminates
or reaches a state pM 1;N 1;Jq, where pM ;N ;Jq ąS pM

1;N 1;Jq.

(1) By lemma 4.7.2 a derivation starting in pM ;N ;Jq either terminates
without using “Conflict” or reaches a state pM2;N ;Cq after an application
of “Conflict”, where pM ;N ;Jq ąS pM

2;N ;Cq.
(2) By lemma 4.7.3 a derivation starting in pM2;N ;Cq either terminates

without using “Continue” or reaches a state pM3lD;N Y tDu;Jq after an
application of “Continue”, where M2 “M3M4.
Let M0 ` l

J
1 `M1 ` ...` l

J
k `Mk be a decomposition of M2.

By construction of “Continue”, M3 “ M0 ` lJ1 ` M1 ` ... ` lJk1 ` Mk1

for some k1 ă k. Hence, fpM0q “ fpM 1
0q, ..., fpMk1´1q “ fpM 1

k1´1q and
fpMk1q ą fpMk1l

D_lq “ fpM 1
k1q. Thus, pM2;N ;Cq ąS pM

3lD;N Y tDu;Jq.

(3) By transitivity pM2lD;N Y tDu;Jq is reachable from pε;N 1;Jq and
pM ;N ;Jq ąS pM

3lD;N Y tDu;Jq.

45

5 Implementation

The goal of the implementation is to test the effect of applying subsumption
resolution during the search. Therefore, to better compare the results of
RCDCL and CDCL, I avoid using heuristics. The implementation itself is
based on a basic version of SPASS-SATT [11].

This chapter focuses on two aspects: Finding subsumption resolutions and
the linear implementation of conflict resolution.

5.1 Data Structures

The important data structure that connects both phases is the stack that
simulates the model assumption. However, instead of just one stack there
are three:

RStack is the reduction stack and contains all decision, propagation, and
reduced literals as tuples (literal, justification, clause, mark). The jus-
tification is the clause that either propagated the literal or reduced it
in the reduced clause. For decisions both justification and clause are
null, whereas only clause is for propagation literals. The mark is used
in the conflict analysis.

SStack is the subsumption stack and consists only of the subsumed clauses.
As subsumption is never responsible for a conflict, they are stored sep-
arately, such that conflict analysis can ignore them.

PStack is the propagation stack and the same as in a standard implementa-
tion of CDCL, i.e., it only contains decisions and propagations.

Next are clauses and the ways they are accessed. Aside from the 2-watched
literal data structure, there is an AllClauses array and a Litset data struc-
ture. AllClauses maps each clause number to its corresponding clause, while
LitSets are occurrence sets for each literal. The implementation of LitSets
is especially adapted for fast intersections while inserting and iterating over
elements is still possible. Its implementation is discussed in more detail in
Section 5.2.5.

47

5.2 Propagation Phase

In the previous chapter I have proven the use of subsumption resolutions
correct, but left out how to actually find them. For unit propagation the
2-watched literal data structure has been established since Chaff [10]. For
subsumption resolution the challenge is to find a data structure which allows
a comparably efficient method. However, as subsumption resolution involves
comparing pairs of clauses, the process is inherently quadratic.

5.2.1 Propagation

Algorithm 1: Clause Propagation(int Index, int PIndex)

Input: Stack and PStack indices where propagation starts.
Output: NULL if no conflict was detected; otherwise the Conflict.
Conflict = NULL;
while NoConflict and Index ă StackSize do

while NoConflict and PIndex ă PStackSize do
Conflict = UnitPropagation(PStack(PIndex));
PIndex``;

if Conflict then return Conflict;
;
switch Stack(Index) do

case lJ or lC

for each Clause in LitSet(´l) do
Conflict “ BackwardSubRes(Clause) ;

case lCD
Conflict “ BackwardSubRes(D) ;

Index``;

return Conflict;

The main loop of propagation is described in Algorithm 1.
The first thing to note is that UnitPropagation still uses the 2-watched

literal lists. As unit propagation is a special case of subsumption resolution,
it will always be more efficient. Furthermore, the effect of propagating a unit
is many times larger than that of a single reduction. Therefore, searching for
reductions is delayed as much as possible until the inner while loop completes
exhaustive unit propagation by iterating over the propagation stack. When

48

unit propagation is done and no conflict occurred, the outer loop continues
its iteration.

Next, to actually look for reductions, I use a method inspired by backward
subsumption, namely, pick a clause and check whether it subsumes or reduces
another in the remaining set. Here, two assumptions are used. First, the
initial set of clauses is completely reduced, i.e., there are no reductions or
subsumptions possible. Second, no clauses are added to the problem set.
While the first assumption is generally assured by preprocessing, the second
is continuously broken with each learned clause. Section 5.2.6 explains how
this is counteracted. Under these assumptions it holds that if a clause does
not reduce any other clause, this property lasts as long as the clause itself
does not change. So, only if the clause shrinks, it could again reduce - or
subsume - another clause.

As the stack tells us which clauses have changed and when, I therefore also
know which clauses became viable for a backward subsumption resolution
check. In the following those are referred to as candidates. In case of decisions
or propagations, all clauses with the negated literal and in case of a reduced
literal, only the affected clause become candidates.

5.2.2 Backward Subsumption Resolution

Algorithm 2: Clause BackwardSubRes(Clause Candidate)

Output: Candidate if it is false; otherwise NULL.
if IsSubsumed(Candidate) then return NULL;
;
Seen “ H;
for each literal L in Candidate do

switch TruthValue(Candidate,L) do
case True return NULL;
;
case False continue ;
;
case Undefinded

Seen “ Seen YtLu ;

if S ““ H then return Candidate;
for each Partner in FindPartners(Seen, Candidate) do

SubRes(Candidate, Partner, Seen);

return NULL

49

Algorithm 3: SubRes(Clause Candidate, Clause Partner, Lits Seen)

if Partner ““ Candidate or IsSubsumed(Partner) then return;
Literal Reduce “ NULL;
Hit “ 0;
for each literal L in Partner do

switch TruthValuepLq do
case True return;
;
case False continue ;
;
case Undefinded

if L P Seen then Hit``;
;
if ´L P Seen then Reduce “ L;

if Reduce ‰ NULL and Hit ““ |Seen| ´ 1 then
Candidate reduces Reduce in Partner

if Hit ““ |Seen| then
Candidate subsumes Partner

Next, the Algorithms 2 and 3 show how reductions are found.

First, the candidate could already be subsumed. In that case, even if
it does reduce another clause, its subsuming clause would either reduce or
subsume that clause as well. Hence, it is ignored. The same holds if the
candidate is satisfied by a true literal. In most cases due to the two watched
literals, a satisfied candidate will be detected early by a true literal in the
first or second position. Then, the candidate’s undefined literals are added
to the Seen set, which will later enable a constant time element check.

Next, the clauses to check the candidate against, called Partners, are cho-
sen. The naive way - short of taking all clauses - is to pick an atom from Seen
and take its occurrence set. The more sophisticated function FindPartners
is described in the next chapter.

Lastly, it performs for each Partner the actual check: After again excluding
subsumed or satisfied clauses and preventing the Candidate from subsuming
itself, It simply counts the number of undefined literals that match with Seen
and notes if a literal appears negated. The set returned by FindPartners even
prevents the case where more than one literal is negated. After this is done,
having counted the same number as the size of Seen means every undefined
literal in Candidate appears in Partner, hence Candidate subsumes Partner.
Counting one less but having found a negated literal respectively means that

50

the Candidate reduces this literal in Partner.
In the special case that a watched literal is reduced, the same procedure

as in unit propagation starts. A still undefined literal replaces the watched
literal and the watched lists are updated. In case the clause is now unit, the
last undefined literal is also propagated.

5.2.3 Determining a Literal’s Truth value

As the truth value of a reduced literal is not global but can differ per clause,
reduced literals need to be recognizable. Fortunately, I can achieve this
indirectly.

Whenever a literal is reduced, I swap it with the currently last position in
the clause and reduce the size value of the clause by one. Iterating over the
literals then never encounters reduced literals, which are thereby effectively
removed from the clause. When I later backtrack the reduced literal and pop
it from the stack, I simply increase the clause’s size again to reinclude the
literal into the clause.

However, conflict analysis still needs the reduced literals. Hence, I save
both sizes, current and actual size, individually. Then, I identify a literal
outside the current bound as a reduced literal.

A similar trick is possible for subsumption, where I use a simple bit flag in
the clause. The flag is set when the subsumption is found and unset when it
is popped from the subsumption stack.

5.2.4 Partner Selection for Subsumption Resolution

Algorithm 4: CSet FindPartners(Lits Seen, Clause Candidate)

Output: A Set of Clauses subsumed or reduced by Seen.
Sub “ AllClausespqz{Candidate};
Red “ H;
for each literal L in Seen do

Red “ pSubX LitSetp´Lqq Y pRedX LitSetpLqq;
Sub “ SubX LitSetpLq;
if Sub ““ H and Red ““ H then break;
;

return Sub Y Red

The function I skipped in the last section FindPartners is given in Algo-
rithm 4. The essential idea is that for a given set Seen, I only want those

51

Figure 5.1: Graphical representation of FindPartners

The Candidate clause’s undefined literals are L1 to Ln. Blue arrows represent
intersections with the occurrence set of the literal on top, whereas red arrows
represent intersections with the occurrence set of the negated literal. Note
that any path has at most one red arrow. Hence, every clause in the end in
Sub and Red contains at most one atom negated compared to the candidate.

clauses which contain the same atoms with at most one negated. The method
is based on the backward subsumption detection by Zhang [14].

The algorithm starts with two sets: Sub, the set of all clauses, and Red,
the empty set. Then, it iterates over the literals in Seen, and for each it
intersects the sets of clauses containing this literal or its negation with Sub
and Red as specified by Algorithm 4 and Figure 5.1.

After the first iteration, Sub and Red are the first literal’s positive and neg-
ative occurrence sets. As this is always the same, the actual implementation
starts there instead. After the next iteration, Sub has all clauses containing
the first and second literal, while Red has the ones containing the first or
second literal and the other one negated. At the end Sub contains all clauses
with the same literals as Seen and Red has the clauses containing exactly
one literal negated. As the Candidate is guaranteed to stay in Sub until the
end but will not be used anyway, it is removed at the start.

The big advantage of this approach is that with each iteration Sub and
Red shrink quickly and often become empty long before the last iteration.

Furthermore, the implementation uses several hacks to improve perfor-
mance. The simplest is to sort Seen by the size of the corresponding Lit-
Sets. The next is called WordLevelParallelism [4]. By encoding clauses into
bitmaps of machine word size, a single AND instruction intersects an entire
range of clauses.

In the case Sub and Red become empty early, any literal not yet used is
irrelevant to the outcome. Again ignoring learnt clauses, as long as none of
the used literals change in Candidate, FindPartners will return the empty
set. Hence, I mark the unused literals and ignore the clause as a candidate if
one of them becomes false. As the model assumption is ignored, the marks

52

Figure 5.2: Example of the LitSet data structure and its use.
On the left is one of the temporary lists Sub and on the right the occurrence
set of a literal L. The word size w is 4 and the hash table has length 2. For
example, the block p2, 0110q encodes clauses 2 ˚ 4` 1 “ 9 and 2 ˚ 4` 2 “ 10.
The result of intersecting the two is shown on the bottom. The intersection
can be computed either linearly or looking up the blocks 2 and 3 in LitSet(L)
using the hash mod 2 and following the pointers. As the intersection of the
2-blocks in both sets – 0110&1001 “ 0000 – is empty, the block is discarded
in the result.

still apply even after backtracking.

After the second or respectively first real iteration, Sub and Red will al-
ready be considerably shorter than the sets they are intersected with. Using
hashing, the intersections can be computed in linear time of the sizes of Sub
and Red instead of their combined sizes. Lastly, the three intersections could
also be computed concurrently, which is not currently implemented.

5.2.5 The LitSet Data Structure

Profiling shows that the FindPartners function takes up the largest part of
the execution time. Hence, it is very important that intersections are as fast
as possible. Hereby, two cases occur. The first is an intersection between
sets of balanced sizes, which generally occurs during the first iteration in
FindPartners. In this case having two sorted arrays and iterating over them
simultaneously is considered most efficient. Furthermore using the mentioned
WordLevelParallelism results in a linear speedup depending on the word size.

With each iteration the intermediate results Sub and Red shrink, while the
Litsets they are intersected with increase in size. After the first iteration their
sizes are already unbalanced. In that case using a hash set for the Litsets

53

and a simple array for Sub and Red is faster because using an element check
for each element in Sub and Red ignores the size of the LitSet.

I want to take advantage of both cases, while avoiding two separate data
structures, which would double the space requirement. Therefore, I combine
both into one by using a Chaining Hash set where the entries are stored in a
sorted array. This is implemented with three arrays.

The first is the array Sort, which contains pairs of block numbers b and
bit vectors v and is sorted by b. A clause with number c is contained in
a LitSet if Sort has a pair pc ˜ w, vq with the pc mod wq-th bit is set in
v. Furthermore, in each v at least one bit is set. Thus, if on average more
than two bits are set in v we save space and in the worst case we use at
most twice as much compared to storing pointers. Sort is used for the linear
intersection, which is similar to the merge from Merge sort.

The remaining arrays are Hash and Link, which contain indices of entries
in Sort. Hash has length n and the index stored at position k in Hash is the
first entry pb, vq in Sort such that b mod n “ k. Link has the same length as
Sort and it stores at position i the index j if j is the next larger index after
i in Sort such that bi mod n “ bj mod n. In both arrays the default value
is ´1. To look up an entry pb, q in Sort using hashing get the pb mod nq-th
entry from Hash and then follow the entries of Link until either the entry in
Sort is found or a ´1 index is encountered. In that case there is no entry
with block number b in Sort.

5.2.6 Propagation after Restart

Let me now revisit propagation. In the beginning I mentioned that I use
backward checks as the core aspect of the search for reductions. However,
this has one major flaw. The assumption that a clause does not reduce
another as long as itself does not change does not take learnt clauses into
account. While a learnt clause is guaranteed to not be subsumed, it could
still be reduced and reduce or subsume existing clauses. Therefore, with
every clause added, this approach becomes less reliable.

The implemented solution consists of two steps. The first step is to use a
forward check when a learnt clause is created to ensure that it is at least not
reducible by any clause under the empty model assumption. The second step
is to regularly restart, where the first propagation after a restart is modified
as described in Algorithm 5.

The first difference is that while again prioritizing unit propagation, I first
use BackwardSubRes on all new learnt clauses since the last restart. As they
are now guaranteed to not be reducible by any of the old clauses, this will

54

Algorithm 5: Clause PropagationRestart()

Output: NULL if no conflict was detected; otherwise the Conflict.
PIndex “ PStackSizeAtRestart();
Conflict “ NULL;
for each Clause in NewClauses() do

while Conflict and PIndex ă PStackSize do
Conflict = UnitPropagation(PStack(PIndex));
PIndex``;

if Conflict then
return Conflict

else
Conflict “ BackwardSubRes(Clause) ;

Conflict =Propagation(StackSizeAtRestart(),PIndex) ;
BuildLitSets();
return Conflict ;

in the end lead to exhaustive reduction and subsumption. This restores the
assumption on the clause set mentioned at the beginning of the chapter.

Algorithm 6: BuildLitSets()

ClearAllLitSets();
Index “ 0;
for each Clause in AllClauses() do

if IsSubsumed(Clause) or IsSatisfied(Clause) then continue ;
;
for each literal L in Clause do

switch TruthValue(Candidate,L) do
case False break ;
;
case Undefined

AddToLitSet(L,Index) ;

SetElement(AllClauses(),Index,Clause);
Index``;

ReduceSize(AllClauses(),Index);

As any propagation, reduction, and subsumption found this way is prior
to the first decision, they are never backtracked. Hence, the second change

55

is that before continuing I reset the data structures and build them again
(cf. Algorithm 6). Satisfied clauses are removed, the remaining clauses are
renumbered and only clauses with an undefined literals are added to the
respective LitSets.

Aside from the obvious advantages of a smaller problem size, this op-
eration especially benefits the expensive function FindPartners. First, the
reduced size of the LitSets directly speeds up the intersections. Secondly, the
reduction of the clause number range due to renumbering improves the ef-
fect of the WordLevelParallelism. Lastly, as FindPartners ignores the model
assumption, it returns partner clauses that have already been reduced or
subsumed every time the responsible clause is a candidate. This means that
those clauses need to be repeatedly checked and prevents FindPartners from
stopping early. Rebuilding the LitSets alleviates this at least in respect to
reductions and subsumptions found before the first decision.

On the other hand, there is the disadvantage of additional time consump-
tion. Whereas in the standard implementation the benefit is too small to
warrant the work, with reduction the combined benefits for FindPartners far
outweighs its cost. Furthermore, as the amounts of deleted and remaining
clauses is relatively balanced and the LitSets are sorted by clause number, re-
moving deleted entries instead of rebuilding the data structures from scratch
is actually more expensive aside from being harder to implement.

5.3 Conflict Phase

The second focus of this chapter is the Conflict phase. As has been seen
in the RCDCL and Proof Chapters, reduction adds a layer of complexity to
analyzing a conflict, for its implementation as well as its run time. Hence, in
this section I will describe how it is implemented in almost linear run time
complexity in the size of the model assumption.

5.3.1 Conflict Analysis

The most important thing to note is that contrary to the description of the
calculus, there is no list of conflict clauses, not even a single conflict clause.
Instead, everything is encoded by the marks in the entries of the RStack.
The marks express three states an entry can be in. The first is NotMarked,
which is the default value. The next is Marked. Marked entries correspond
to marked literals in the conflict clause list. Lastly there are WasMarked
entries. Those encode conflict literals that were marked once but have since
been resolved away.

56

Algorithm 7: Clause Resolution(Clause Conflict)

Input: A false Clause Conflict.
Output: A Resolvent without reduced Literals.
Resolvent “ H;
PIndex “ PStackTop();
RIndex “ 0;
for each literal l in Conflict do

Mark(lConflict);

while PIndex ě 0 do
while RIndex ď RStackTop() do

if RStack(RIndex)““ lC_lD and Marked(lC_lD) then
for each literal L in CzMRIndexpDq do

if WasMarked(LC_l) then
Mark(LC_l) ;
RIndex “ ´1;

UnMark(lC_lD);

RIndex``;

switch PStack(Index) do
case lJ

if Marked(lJ) then break ;
;

case lC_l

for each literal L in C do
if WasMarked(LC_l) then

Mark(LC_l);
RIndex “ 0;

UnMark(lC_l);

PIndex´´ ;

while PIndex ě 0 do
if Marked(PStack(PIndex)) then

Resolvent “ Resolvent Y tPStack(PIndex)u

PIndex´´ ;

return ForwardReduction(Resolvent);

57

For unmarked conflict literals, such strong invariants hold that they do not
have to be modeled at all.

The Resolution is described in Algorithm 7. The first step is to encode
the conflict clause. For every literal the corresponding entry on the RStack
is marked. Stack offsets saved in the clauses for reduced literals and in the
assignment for decision and propagation literals enable constant access to
these entries.

Then analogously to Propagation but in reversed order, the inner loop first
resolves all reduced literals by iterating over the RStack bottom up, while
the outer loop resolves propagation literals iterating top down.

In each case I respectively mark the entries corresponding to the marked
conflict literals as described in the calculus and unmark the resolved literal.
However, if an entry was already marked, it is not marked again. This way
I never resolve a reduced literal twice. While the loops themselves have
quadratic run time, actual computation only occurs in linearly many cases.

Lastly, the learnt clause is extracted by collecting all marked literals from
the stack and is added to the clause set after calling ForwardReduction.

The implementation also uses 1UIP [12], which is not reflected here in the
pseudo code. However, if the number of top level conflict literals is checked
after the inner loop finishes, reduced literals on the top level do not have to
be counted.

5.3.2 Forward Reduction of Learned Clauses

Algorithm 8: Clause ForwardReduction(Clause Resolvent)

Output: An irreducible Resolvent.
for each literal L in Resolvent do

for each Clause in PropSetp´Lq do
if ReducespClause,Resolvent, Lq then

Resolvent “ ResolventztLu;
break ;

return Resolvent

As mentioned in Section 5.2.6, an assumption of propagation after a restart
is that new clauses are neither reduced nor subsumed by any existing clause.
Whereas subsumption is excluded by Lemma 4.6.1, reductions are still pos-
sible. Hence, I use ForwardReduction (Algorithm 8) on any new learned
clause.

58

Algorithm 9: Bool Reduces(Clause Candidate, Clause, Literal Lit)

Input: ´Lit P Candidate and Lit P Clause.
Output: Whether Candidate reduces Lit in Clause.
for each literal L in Candidate do

if L ‰ ´Lit and L R Clause then
return False

return True

ForwardReduction iterates over each literal and checks whether a clause
containing the negated literal reduces it. Note the fact that any clause re-
ducing a learnt clause has exactly one true literal, while the remaining literals
are false. By the invariant of the 2-watched literal data structure in such a
clause this true literal is watched. Hence, it actually only needs to iterate
over the set of clauses where the literal to be reduced is watched.

Additionally, as the literals of the Resolvent are ordered by their decision
level, it can skip the first literal. Assuming the first literal, which has the
highest decision level in the clause, were reducible the search would have
missed either a conflict or a unit propagation when the literal had been
decided.

Furthermore, reducing the second and following literals can result in a
farther back-jump than was possible without ForwardReduction.

59

6 Results

6.1 The Effect of Subsumption on Satisfied Clauses

As mentioned, the Subsumption Rule is not essential to the calculus. One
can even see in the rules and proofs that subsumptions are not involved with
conflicts and therefore, do not influence the search depth.

On the other hand, in the implementation subsumptions save time as they
exclude clauses from becoming candidates. At the same time finding them
creates little overhead. Ignoring subsumptions would only remove a single
intersection from FindPartners in some cases and their respective checks.
The only apparent drawback is the added complexity in the soundness proof.

However, without subsumptions I could use a simpler definition 3.2.3 for
satisfied clauses; namely the same definition as in CDCL: A clause is satisfied
whenever any literal is set to true; even one that had been reduced already.

Intuitively, this can be explained as reducing a literal does not actually set
it to false in the respective clause, but it is rather considered irrelevant. More
formally, if a reduced literal is set to true, it becomes false in the reducing
clause, which then subsumes the reduced clause. Even if further reductions
prevent an immediate subsumption, one could derive a resolvent from the
involved clauses that does.

The last question left is why this definition cannot be used in combination
with subsumption. The answer is that together they can create cycles be-
tween subsuming clauses. For example, assume the clauses L1_L2_L3 and
L1 _ L2 _ L3, where the first reduces L1 in the second and then the second
subsumes the first. Now assume we decide L1, which would satisfy the sec-
ond clause. It seems both are satisfied, although the model L1 by itself only
satisfies the second. The decision actually invalidated the subsumption.

Therefore, to prevent this I restrict the definition to literals that are not
reduced.

61

6.2 Pure Literal Elimination

Another theoretical point are pure literals. At an earlier stage, a more naive
implementation of propagation detected some pure literals with only a con-
stant overhead. This was, however, dropped in favor of the FindPartners
function.

One particular difference is that without pure literals I can use subsumed
clauses as the conflict clause. While being subsumed guarantees that there
is another conflicting clause which is not subsumed, either one can be used
to analyze the conflict. The same holds for unit propagation.

Otherwise, pure literals can be responsible for subsumed clauses to become
conflicting. Then, the analysis is blocked as pure literals have no resolvable
justification.

6.3 Development

The implementation went through several changes before reaching its current
state. Starting from a basic SAT-solver with only unit propagation [10] and
last UIP conflict analysis [12], I first naively implemented reduction.

A reduction in a clause was marked by the corresponding index on the
stack. Consequently, every time a reduced literals truth value was computed,
the entry on the stack had to be matched with the clause as the reduction
could have been invalidated by backtracking. The advantage was that during
backtracking the data structure was not updated following a common design
philosophy of many sat solvers. Although the check has constant time, a
literal’s truth value is computed so frequently that 5 to 10 percent of the
run time went into it. Therefore, this was later replaced by instead swap-
ping reduced literals to the end of the clause, which avoids the costly check
completely, while shifting the responsibility to the backtracking algorithm
instead. The same was analogously changed for handling subsumption of
clauses.

Also, the model was first implemented as a single stack containing deci-
sions, propagations, reductions, and subsumptions as described by he calcu-
lus. However, subsumptions are in most cases very frequent and add an un-
necessary burden to propagation and conflict analysis as both have to iterate
over the model stack while filtering the subsumptions. Hence, subsumptions
were separated from the rest into their own stack.

Next, the propagation initially alternated between unit propagation and
subsumption resolution while iterating up the stack: In case of a decision or
propagation literal, the clauses in the 2-watched-literal data structure were

62

updated and then the occurrence list was traversed with backward subsump-
tion resolution. This, however, often lead to expensively found reductions
becoming immediately irrelevant by following unit propagations. Hence, the
change to nested loops where full unit propagation precedes the search for
reductions and any additionally found propagation suspends the search for
another round of unit propagation.

Furthermore, at the start Backward Subsumption Resolution mirrored
UnitPropagation as it also had to handle when a candidate was violating the
invariant of the 2-watched data structure due to a reduction. This was mostly
redundant as most clauses where this was possible were already treated by
UnitPropagation beforehand. By moving the responsibility to the reduc-
tion function, i.e., restoring the invariant whenever a reduction is found, a
candidate is now always guaranteed to satisfy the invariant.

Unsurprisingly, the biggest changes saw the Backward Subsumption Res-
olution algorithm and the data structure for occurrence lists. Initially, the
Partners for the reduction check would be naively taken from the union of
the positive and negative occurrence lists of an atom occurring in the Can-
didate; preferably the one with the least occurrence, whereas the occurrence
lists were simply arrays of clause pointers. Under this framework I had also
implemented a check for pure literals as the traversal of the occurrence lists
would determine whether the corresponding literal still occurred undefined
in an unsatisfied clause.

The first big change was the addition of the FindPartner algorithm as de-
scribed in section 5.2.4 based on Zhang’s method [14]. However, using the
existing data structure was still inefficient as every comparison for the inter-
sections required dereferencing the clause pointer. Changing the occurrence
sets to lists of clause numbers and accessing the clauses over the AllClauses
map in the end immediately halved run times on my examples.

As intersections are a well studied topic in database systems, the next
improvement was in part inspired by one such method [4]. I encoded the
clause numbers into the block number-bit vector pairs to allow parallel inter-
sections using AND instructions on the bit vectors. This brought on average
another double speed up. Lastly, adding hash maps and using them after the
first iteration again almost halved the time cost of the FindPartner function.
With this change the algorithm spends only about a quarter of its time after
the first iteration compared to about half before. Altogether, these changes
lower ForwardSubsumption’s percentage of the run time from about ninety
percent to around forty.

To increase the pool of solvable problems for evaluation, I implemented
further improvements to the base algorithm by adding standard features of

63

modern Sat solvers. First, conflict analysis learning the last UIP clause was
replaced with learning the first UIP clause [12], which is further improved
by recursive clause minimization [13] [7]. Lastly, Minisat’s EVSIDS decision
heuristic [6] replaces the original static variable ordering.

6.4 Evaluation

For the evaluation of the implementation, I use the SATLIB benchmark li-
brary [9] and especially the unsatisfiable problems from the Uniform Random-
3-SAT benchmarks [2]. Their availability in several orders of difficulty al-
lowed me to adjust testing with each step from the primitive first implemen-
tation to the finished version. Furthermore, as each size consists of one hun-
dred unsatisfiable instances, the average results are stable against statistical
outliers. Lastly, avoiding satisfiable instances mostly prevents unrepresenta-
tive comparisons due to lucky guesses.

Two versions of the implementation are evaluated. The first is the one
described in chapter 5 with subsumption resolution. In the second Sub-
sumption resolution is skipped. However, the now unused data structures
for subsumption resolution remain. Both versions restart whenever the CNF
formula’s size doubles. In both versions, only subsumed clauses are removed
using the backward subsumption resolution algorithm instead of forgetting
clauses. While intended for the first version, this is done in the second as well
to keep the size of the problem and consequently, the speed of propagation
comparable.

The benchmarks are run on an Intel(R) Core(TM) i7-3630QM CPU @
2.40GHz with eight gigabyte of memory with a five minute timeout.

6.4.1 First Experiment

In the first experiment, both versions use a static variable ordering and learn
the last UIP clause. They are each run once on each of the one hundred
problems in the uuf75-325, uuf125-538 and uuf150-645 sets and on one hun-
dred problems of the one thousand in uuf100-430. The results are shown in
Figure 6.1 and 6.2.

In the first set, the run times were too short to be comparable, and in
the last set 63 runs reached the time out for the version with Subsumption
resolution and 22 timed out for both versions. Figure 6.1 shows that on
average subsumption resolution reduced the search depth by 20 to 25% and
in some cases it almost halves depth. However, subsumption resolution adds

64

Problems time % conflicts % decisions %
uuf75-325 - 71 (50-97) 72 (46-97)
uuf100-430 222 (116-422) 76 (55-109) 78 (56-106)
uuf125-538 362 (175-861) 77 (58-107) 79 (60-111)
uuf150-645 529 (324-867) 79 (70-92) 81 (72-94)

Figure 6.1: The results for the comparison of the two simple versions of
the implementation: With and without Subsumption Resolution.
Each column has the averaged relation as well as minimum and
maximum of the first to the second version in percent for run
time, number of conflicts and number of decisions.

Problems Subsumptions % Candidates % Propagations
uuf75-325 56 (48-72) 18 (14-22) 28 (13-87)
uuf100-430 52 (46-60) 21 (15-32) 23 (7-39)
uuf125-538 51 (46-58) 24 (19-33) 20 (10-49)
uuf150-645 50 (47-55) 25 (21-31) 20 (10-35)

Figure 6.2: Some statistics for the occurrence of Subsumption Resolutions.
The first column shows the proportions between reductions and
subsumptions. The second shows the chance for each backward
reduction check to find a reduction. The last column has the
ratio of unit propagations to reductions.

considerable overhead, which also scales worse than the version without it as
indicated by the increasing overhead with larger problem sizes.

Figure 6.2 contains information solely about the implementation with sub-
sumption resolution. It shows that reductions and subsumptions occur with
about the same frequency and on average checking a candidate with backward
reduction has a one in four to five chance of finding a reduction. Further,
there is a reduction for about every 25 unit propagations.

6.4.2 Second Experiment

In the second experiment, both versions use additionally recursively mini-
mized 1UIP clause learning and the EVSIDS decision heuristic. This time
each problem is run twice for each version with two different starting order-
ings – atom numbers in ascending and descending order. In the cases without
timeouts, the two results for each problem are averaged, and the averages
are used to compute the ratios. Due to the improvements, both versions can
solve considerably larger problem instances.

65

Problems time % conflicts % decisions %
uuf125-538 234 (111-400) 94 (59-130) 94 (57-129)
uuf150-645 302 (177-560) 96 (71-135) 96 (70-133)
uuf175-753 426 (179-886) 99 (67-138) 99 (67-138)
uuf200-860 631 (309-1132) 100 (70-122) 99 (69-122)
uuf225-960 867 (492-1400) 101 (82-124) 101 (82-123)

Figure 6.3: The results for the comparison of the two versions of the imple-
mentation: With and without Subsumption Resolution. Each
column has the averaged relation as well as minimum and max-
imum of the first to the second version in percent for run time,
number of conflicts and number of decisions.

Problems Subsumptions % Candidates % Propagations
uuf125-538 26 (21-47) 14 (11-19) 163 (62-295)
uuf150-645 25 (21-44) 17 (13-22) 163 (79-306)
uuf175-753 25 (22-43) 20 (14-26) 167 (91-339)
uuf200-860 24 (21-42) 24 (21-31) 151 (94-221)
uuf225-960 23 (22-38) 26 (22-31) 151 (81-231)

Figure 6.4: Some statistics for the occurrence of Subsumption Resolutions.
The first column shows the proportions between reductions and
subsumptions. The second shows the chance for each backward
reduction check to find a reduction. The last column has the
ratio of unit propagations to reductions.

Timeouts occurred eleven times for the problem set uuf225-960. Figure
6.3 shows that while the overheads are still dominant, the effect of sub-
sumption resolution seems to be completely gone. Apparently the standard
improvements to CDCL somehow already include the effect of subsumption
resolution. Figure 6.4 confirms that indeed the amount of reductions dras-
tically decreases. While a candidates success rate stays roughly the same,
reductions are now half as frequent compared to subsumptions and about six
times rarer compared to unit propagations. With such a low occurrence it
is not surprising that subsumption resolution has an unnoticeable impact on
search depth.

66

6.5 Conclusion

In this thesis I have generalized unit propagation, a core concept of Sat solv-
ing. I have developed RCDCL, an extension of the CDCL calculus, that
incorporates subsumption resolution into the search while keeping most as-
pects attributed to the efficiency of CDCL intact. Further, I have proven
the correctness of the new calculus and implemented it into a working SAT
solver. The evaluation of my implementation suggests that under a bare
bones version of CDCL subsumption resolution indeed reduces search depth.
However, modern techniques, such as learning 1UIP clauses and the VSIDS
decisions heuristic, are preempting the effect.

6.5.1 Future Work

Although the evaluation results rather discourage further development of the
calculus and its implementation, there are possible directions to continue.

First, during the evaluation I experienced that the overhead created by
subsumption resolution restricted to in-processing was only about 10%. Com-
paring my implementation of propagation to existing pre- and in-processing
algorithms might be interesting.

Also, the benchmark set for the evaluation was restricted to randomly gen-
erated problems. Problems commonly solved with SAT contain structures,
where subsumption resolution might have an advantage. This was a mayor
concern for me in the evaluation. Unfortunately, structured problems that
are both unsatisfiable and solvable in a realistic time frame by my implemen-
tation are rare due to its large overhead .

Assuming such problem types exist or subsumption resolution were more
effective, the overhead would still have to be dealt with. The main part of the
subsumption resolution check, the FindPartner function, could be improved
using multi-threading as each of the three intersections in an iteration can
be computed individually. This could realistically cut the overhead of the
reduction search in half.

Also, the current search is exhaustive, but only a fraction of checked candi-
date clauses results in subsumption resolutions, of which again only a fraction
is actually involved in conflicts. An incomplete search using proper heuristics
could avoid much of the unnecessary overhead.

Lastly, another approach could have been to use hidden literal elimination
[8]. This is in a way restricting subsumption resolution to clauses of length
two, while also using the clauses created by the transitive closure of the
binary implication graph. This would have the added benefit of convergence,
i.e., the order of the resolutions is irrelevant.

67

Bibliography

[1] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, edi-
tors. Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2009.

[2] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the
Really Hard Problems Are. In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence, IJCAI-91, Sidney, Australia,
pages 331–337, 1991.

[3] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[4] Bolin Ding and Arnd Christian Knig. Fast set intersection in memory.
PVLDB, 4(4):255–266, 2011.

[5] Niklas Eén and Armin Biere. Effective preprocessing in sat through
variable and clause elimination. In In proc. SAT’05, volume 3569 of
LNCS, pages 61–75. Springer, 2005.

[6] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In SAT,
pages 502–518, 2003.

[7] Allen Gelder. Improved conflict-clause minimization leads to improved
propositional proof traces. In Proceedings of the 12th International Con-
ference on Theory and Applications of Satisfiability Testing, SAT ’09,
pages 141–146, Berlin, Heidelberg, 2009. Springer-Verlag.

[8] Marijn J. H. Heule, Matti Järvisalo, and Armin Biere. Efficient cnf sim-
plification based on binary implication graphs. In Proceedings of the 14th
international conference on Theory and application of satisfiability test-
ing, SAT’11, pages 201–215, Berlin, Heidelberg, 2011. Springer-Verlag.

[9] Holger H. Hoos and Thomas Stützle. SATLIB: An Online Resource for
Research on SAT, 2000.

69

[10] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient sat solver. In AN-
NUAL ACM IEEE DESIGN AUTOMATION CONFERENCE, pages
530–535. ACM, 2001.

[11] Dennis Schwarz and Ching Hoo Tang. SpassSATT. November 2011.

[12] João P. Marques Silva and Karem A. Sakallah. Grasp: A new search
algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM inter-
national conference on Computer-aided design, ICCAD ’96, pages 220–
227, Washington, DC, USA, 1996. IEEE Computer Society.

[13] Niklas Sörensson and Armin Biere. Minimizing learned clauses. In
Proceedings of the 12th International Conference on Theory and Appli-
cations of Satisfiability Testing, SAT ’09, pages 237–243, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[14] Lintao Zhang. On subsumption removal and on-the-fly cnf simplifica-
tion. In Fahiem Bacchus and Toby Walsh, editors, SAT, volume 3569 of
Lecture Notes in Computer Science, pages 482–489. Springer, 2005.

70

