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Abstract. Simple clause learning over theories SCL(T) is a decision
procedure for the Bernays-Schoenfinkel fragment over bounded difference
constraints BS(BD). The BS(BD) fragment consists of clauses built from
first-order literals without function symbols together with simple bounds
or difference constraints, where for the latter it is required that the vari-
ables of the difference constraint are bounded from below and above.
The SCL(T) calculus builds model assumptions over a fixed finite set
of fresh constants. The model assumptions consist of ground foreground
first-order and ground background theory literals. The model assump-
tions guide inferences on the original clauses with variables. We prove
that all clauses generated this way are non-redundant. As a consequence,
expensive testing for tautologies and forward subsumption is completely
obsolete and termination with respect to a fixed finite set of constants
is a consequence. We prove SCL(T) to be sound and refutationally com-
plete for the combination of the the Bernays Schoenfinkel fragment with
any compact theory. Refutational completeness is obtained by enlarging
the set of considered constants. For the case of BS(BD) we prove an ab-
stract finite model property such that the size of a sufficiently large set
of constants can be fixed a priori.

1 Introduction

Our work is motivated by the modeling, execution and verification of a “supervi-
sor” [10], a component in a technical system that controls system functionality.
Examples for a supervisor are the electronic control unit of a combustion en-
gine or a control unit for the lane change assistant in a car. In this context
we have been looking for a decsision procedure of a logical fragment that has
sufficient expressivity to model supervisor functionality and properties; at the
same time the fragment should run efficiently, i.e., generating consequences out
of ground facts (inputs), and, finally, it should be push button verifiable (decid-
able). The Bernays Schoenfinkel fragment of first-order logic over linear arith-
metic BS(LRA) is a candidate for such a fragment. The first-order part can be
used to specify the rules and properties of a supervisor and the linear arithmetic



part to deal with technicalities of the application. For example, computing the
(real world) injection time of a charged combustion engine contains rules like
the one below:

P (x) ∧ 150 ≤ x ≤ 200 ∧R(y) ∧ 6500 ≤ y ≤ 7000 ∧ T (x, y, z)→ I(z + 10)
where x is the air pressure in the inlet manifold, y the speed of the engine, T
a table lookup for the injection time z and finally 10 is added for engine heat
protection. In the real world, the added heat protection part 10 is the result
of an additional computation taking temperature of the engine, exhaust gas,
inlet air and lambda value into account. In the supervisor context, a decision
procedure should also deliver explanations, i.e., explicit (counter) models and
proofs. In addition to efficiency, this is another reason why we designed SCL(T)
to compute explicit models and proofs.

The combination of linear rational arithmetic (LRA) with the Bernays Schoen-
finkel fragment of first-order logic (BS(LRA)) is already undecidable for a single
monadic predicate [9,13]. This can be shown by encoding the halting problem of
a 2-counter machine [17]. For a number of universally quantified fragments there
exist complete methods and some fragments are even decidable [12,16,24]. If the
first-order part of BS(LRA) consists only of variables and predicates, then there
exist refutationally complete calculi [1].

In this paper we introduce a new calculus SCL(T) (Simple Clause Learning
over Theories) for the combination of a background theory with a foreground
first-order logic without equality. As usual in a hierarchic setting, we assume the
background theory to be term-generated and compact. In this paper we only con-
sider pure clause sets where the only symbols occurring in the clause set from the
foreground logic are predicates and variables. Reasoning in the SCL(T) calculus
is driven by a partial, finite model assumption similar to conflict driven clause
learning (CDCL) [23,14,18] and our previous work [11]. In contrast to SMT, the
model assumption is not build on an a priori abstraction of ground literals to
propositional logic, but from ground background and ground foreground theory
literals generated by SCL(T) through instantiation and respecting their seman-
tics. So any SCL(T) trail is always satisfiable in the combined theory. Inferences
are performed on the original clauses with variables, similar to hierarchic super-
position, where the ordering restrictions of hierarchic superposition are replaced
by guidance through the partial ground model assumption. The main advantage
of this approach is that learned clauses are never redundant, Lemma 22, and
that the partial model assumption can be explored to derive an overall explicit
model. SCL(T) is sound, Lemma 9 and Lemma 12, and refutationally complete,
Theorem 25. As a running example, we present the combination of linear ratio-
nal arithmetic (LRA) with the Bernays Schoenfinkel fragment of first-order logic
(BS(LRA)).

In order to demonstrate the potential of SCL(T) we prove it can decide
the class BS(BD), the Bernays-Schoenfinkel fragment over simple bounds and
bounded difference constraints, Section 3. This class was known to be decidable
before [24], but not on the basis of a sound and complete calculus such as SCL(T).



Related Work: In contrast to variants of hierarchic superposition [1,16,4] SCL(T)
selects clauses via a partial model assumption and not via an ordering. This has
the advantage that SCL(T) does not generate redundant clauses. Where hierar-
chic superposition builds implicit models via saturated clause sets, SCL(T) builds
explicit, finite model candidates that need to be extended to overall models of a
clause set, see Example 13 and Section 4. One way to deal with universally quan-
tified variables in an SMT setting is via instantiation [12,21]. This has shown
to be practically useful in many applications. It typically comes without com-
pleteness guarantees and it does not learn any new clauses with variables. While
mcSAT [8] extends the SMT framework with the possibility to create new liter-
als, its learning capabilities are also limited to the ground case. An alternative
is to combine SMT techniques with superposition [7] where the ground literals
from an SMT model assumption are resolved by superposition with first-order
clauses. SCL(T) does not resolve with respect to its ground model assumption
but on the original clauses with variables. Program verification through Horn
clause reasoning [5] is another research direction related to SMT and SCL(T).
Here constrained Horn clauses are considered and various reasoning methods
have been developped. Our logic is not restricted to Horn clauses and our rea-
soning methods are different. In the same way SMT solving can be used to keep
track of consistent SCL(T) trails, Horn clause reasoning could be used to ex-
plore the propagation space of an SCL(T) run. Background theories can also
be built into first-order superposition in a kind of lazy way. This direction has
been followed by SPASS+T [19] and Vampire [15]. The idea is to axiomatize
part of the background theory in first-order logic and to direct ground literals
of the background theory to SMT solver. Also this approach has shown to be
practically useful but comes without any completeness guarantees and gener-
ated clauses may be redundant. Model evolution [2] has also been extended with
linear integer arithmetic [3] where universally quantified integer variables are
finitely bound from the beginning. A combination of first-order logic with linear
integer arithmetic has also been built into a sequent calculus [22] that operates
in the style of a free-variable tableau calculus with incremental closure. No new
clauses are learned.

Organization of the Paper: After a section fixing notation, notions and some pre-
liminary work, Section 2, the following Section 3 introduces the SCL(T) calculus
and proves its properties. Missing proofs can be found in an arXiv publication [6].
Section 4 presents decidability of BS(BD) by SCL(T). The final Section 5 dis-
cusses extensions to model building, further improvements and summarizes the
obtained results.

2 Preliminaries

Many-Sorted First-Order Logic without Equality: A many-sorted signature Σ =
(S, Ω,Π) is a triple consisting of a finite, non-empty set S of sort symbols, a
non-empty set Ω of operator symbols (also called function symbols) over S and



a finite set Π of predicate symbols over S. For every sort from S there is at least
one constant symbol in Ω of this sort. First-order terms, atoms, literals, clauses,
formulas and substitutions are defined in the usual many-sorted way where an
additional infinite set X of variables is assumed, such that for each sort from
S there are infinitely many variables of this sort in X . For each sort S ∈ S,
TS(Σ,X ) denotes the set of all terms of sort S and TS(Σ) the set of all ground
terms of sort S.

For notation, a, b, c are constants from Ω, w, x, y, z variables from X , and if
we want to emphasize the sort of a variable, we write xS for a variable of sort
S; t, s denote terms, P,Q,R predicates from Π, A,B atoms, L,K,H denote
literals, C,D denote clauses, and N denotes a clause set. For substitutions we
write σ, δ, ρ. Substitutions are well-sorted: if xsσ = t then t ∈ TS(Σ,X ), they
have a finite domain dom(σ) = {x | xσ 6= x} and their codomain is denoted by
codom(σ) = {xσ | x ∈ dom(σ)}. The application of substitutions is homomor-
phically extended to non-variable terms, atoms, literals, clauses, and formulas.
The complement of a literal is denoted by the function comp. For a literal L,
|L| denotes its respective atom. The function atoms computes the set of atoms
from a clause or clause set. The function vars maps terms, literals, clauses to
their respective set of contained variables. The function con maps terms, liter-
als, clauses to their respective set of constants. A term, atom, clause, or a set
of these objects is ground if it does not contain any variable, i.e., the function
vars returns the empty set. A substitution σ is ground if codom(σ) is ground.
A substitution σ is grounding for a term t, literal L, clause C if tσ, Lσ, Cσ is
ground, respectively. The function gnd computes the set of all ground instances
of a literal, clause, or clause set. Given a set of constants B, the function gndB
computes the set of all ground instances of a literal, clause, or clause set where
the grounding is restricted to use constants from B. The function mgu denotes
the most general unifier of two terms, atoms, literals. As usual, we assume that
any mgu of two terms or literals does not introduce any fresh variables and is
idempotent.

The semantics of many-sorted first-order logic is given by the notion of an
algebra: let Σ = (S, Ω,Π) be a many-sorted signature. A Σ-algebra A, also
called Σ-interpretation, is a mapping that assigns (i) a non-empty carrier set
SA to every sort S ∈ S, so that (S1)A ∩ (S2)A = ∅ for any distinct sorts
S1, S2 ∈ S, (ii) a total function fA : (S1)A × . . . × (Sn)A → (S)A to every
operator f ∈ Ω, arity(f) = n where f : S1 × . . . × Sn → S, (iii) a relation
PA ⊆ ((S1)A×. . .×(Sm)A) to every predicate symbol P ∈ Π with arity(P ) = m.
The semantic entailment relation |= is defined in the usual way. We call a Σ-
algebra A term-generated if A fulfills the following condition: whenever A entails
all groundings Cσ of a clause C (i.e., A |= Cσ for all grounding substitutions σ
of a clause C), then A must also entail C itself (i.e., A |= C).

Hierarchic Reasoning: The starting point of a hierarchic reasoning [1,4] is a
background theory T B over a many-sorted signature ΣB = (SB, ΩB, ΠB) and a
non-empty set of term-generated ΣB-algebras CB: T B = (ΣB, CB). A constant
c ∈ ΩB is called a domain constant if cA 6= dA for all A ∈ CB and for all



d ∈ ΩB with d 6= c. The background theory is then extended via a foreground
signature ΣF = (SF , ΩF , ΠF ) where SB ⊆ SF , ΩB ∩ΩF = ∅, and ΠB ∩ΠF =
∅. Hierarchic reasoning is based on a background theory T B and a respective
foreground signature ΣF : H = (T B, ΣF ). It has its associated signature ΣH =
(SF , ΩB∪ΩF , ΠB∪ΠF ) generating hierarchic ΣH-algebras. A ΣH-algebra A is
called hierarchic with respect to its background theory T B, if AH|ΣB ∈ CB. As
usual, AH|ΣB is obtained from a AH-algebra by removing all carrier sets SA for
all S ∈ (SF \ SB), all functions from ΩF and all predicates from ΠF . We write
|=H for the entailment relation with respect to hierarchic algebras and formulas
from ΣH and |=B for the entailment relation with respect to the CB algebras
and formulas from ΣB.

Terms, atoms, literals build over ΣB are called pure background terms, pure
background atoms, and pure background literals, respectively. All terms, atoms,
with a top-symbol from ΩB or ΠB, respectively, are called background terms,
background atoms, respectively. A background atom or its negation is a back-
ground literal. All terms, atoms, with a top-symbol from ΩF or ΠF , respectively,
are called foreground terms, foreground atoms, respectively. A foreground atom
or its negation is a foreground literal. Given a set (sequence) of H literals, the
function bgd returns the set (sequence) of background literals and the function
fgd the respective set (sequence) of foreground literals. A substitution σ is called
simple if xSσ ∈ TS(ΣB,X ) for all xS ∈ dom(σ) and S ∈ SB.

As usual, clauses are disjunctions of literals with implicitly universally quan-
tified variables. We often write a ΣH clause as a constrained clause, denoted
Λ ‖ C where Λ is a conjunction of background literals and C is a disjunction
of foreground literals semantically denoting the clause ¬Λ ∨ C. A constrained
closure is denoted as Λ ‖ C ·σ where σ is grounding for Λ and C. A constrained
closure Λ ‖ C · σ denotes the ground constrained clause Λσ ‖ Cσ.

In addition, we assume a well-founded, total, strict ordering ≺ on ground
literals, called an H-order, such that background literals are smaller than fore-
ground literals. This ordering is then lifted to constrained clauses and sets thereof
by its respective multiset extension. We overload ≺ for literals, constrained
clauses, and sets of constrained clause if the meaning is clear from the context.
We define � as the reflexive closure of ≺ and N�Λ‖C := {D | D ∈ N and D �
Λ ‖ C}. An instance of an LPO with according precedence can serve as ≺.

Definition 1 (Clause Redundancy). A ground constrained clause Λ ‖ C is
redundant with respect to a set N of ground constrained clauses and an order ≺
if N�Λ‖C |=H Λ ‖ C. A clause Λ ‖ C is redundant with respect to a clause set
N , an H-order ≺, and a set of constants B if for all Λ′ ‖ C ′ ∈ gndB(Λ ‖ C) the
clause Λ′ ‖ C ′ is redundant with respect to ∪D∈N gndB(D).

Example 2 (BS(LRA)). The running example in this paper is the Bernays-
Schoenfinkel clause fragment over linear arithmetic: BS(LRA). The background
theory is linear rational arithmetic over the many-sorted signature ΣLRA =
(SLRA, ΩLRA, ΠLRA) with SLRA = {LRA}, ΩLRA = {0, 1,+,−} ∪ Q, ΠLRA =
{≤, <, 6=,=, >,≥}) where LRA is the linear arithmetic sort, the function sym-
bols consist of 0, 1,+,− plus the rational numbers and predicate symbols ≤, <



,=, 6=, >,≥. The linear arithmetic theory T LRA = (ΣLRA, {ALRA}) consists of
the linear arithmetic signature together with the standard model ALRA of lin-
ear arithmetic. This theory is then extended by the free (foreground) first-order
signature ΣBS = ({LRA}, ΩBS, ΠBS) where ΩBS is a set of constants of sort
LRA different from ΩLRA constants, and ΠBS is a set of first-order predicates
over the sort LRA. We are interested in hierarchic algebras ABS(LRA) over the
signature ΣBS(LRA) = ({LRA}, ΩBS ∪ ΩLRA, ΠBS ∪ ΠLRA) that are ΣBS(LRA)

algebras such that ABS(LRA)|ΣLRA = ALRA.

Note that our definition of the BS(LRA) fragment restricted to the linear
arithmetic sort does not restrict expressiveness compared to a definition adding
further free sorts to ΣBS. Free sorts containing only constants can be simulated
by the linear arithmetic sort in a many-sorted setting.

We call a clause set N abstracted if the arguments of any predicate from ΠF

are only variables. Abstraction can always be obtained by adding background
constraints, e.g., the BS(LRA) clause x > 1 ‖ R(x, 5) can be abstracted to x >
1, y = 5 ‖ R(x, y), preserving satisfiability. Recall that even in the foreground
signature we only consider background sorts and that the only operators in the
foreground signature are constants.

A set N of H clauses is called pure if it does not contain symbols from
ΩF ranging into a sort of SB. In this case N is sufficiently complete according
to [1], hence hierarchic superposition is complete for N [1,4]. As a consequence,
a pure clause set N is unsatisfiable iff gndB(N) can be refuted by hierarchic
superposition for a sufficiently large set B of constants. We will make use of this
result in the completeness proof for our calculus, Theorem 24.

Satisfiability of pure clause sets is undecidable. We already mentioned in the
introduction that this can be shown through a reduction to the halting problem
for two-counter machines [17,13]. Clause redundancy for pure clause sets cannot
be decided as well, still SCL(T) learns only non-redundant clauses.

Lemma 3 (Non-Redundancy for Pure Clause Sets is Undecidable). For
a pure clause set N it is undecidable whether some clause C is non-redundant
with respect to N .

3 SCL(T)

Assumptions: For this section we consider only pure, abstracted clause sets N .
We assume that the background theory T B is term-generated, compact, contains
an equality =, and that all constants of the background signature are domain
constants. We further assume that the set ΩF contains infinitely many constants
for each background sort.

Example 4 (Pure Clauses). With respect to BS(LRA) the unit clause x ≥ 5, 3x+
4y = z ‖ Q(x, y, z) is abstracted and pure while the clause x ≥ 5, 3x+4y = a, z =
a ‖ Q(x, y, z) is abstracted but not pure because of the foreground constant a of
the LRA sort, and the clause x ≥ 5, 3x+ 4y = 7 ‖ Q(x, y, 7) is not abstracted.



Note that for pure, abstracted clause sets, any unifier between two foreground
literals is simple and its codomain consists of variables only.

In order for the SCL(T) calculus to be effective, decidability in T B is needed
as well. For the calculus we implicitly use the following equivalence: A ΣB sen-
tence ∃x1, . . . , xnφ where φ is quantifier free is true, i.e., |=B ∃x1, . . . , xnφ iff
the ground formula φ{x1 7→ a1, . . . , xn 7→ an} where the ai are ΩF constants
of the respective background sorts is H satisfiable. Together with decidability in
T B this guarantees decidability of the satisfiability of ground constraints from
constrained clauses.

If not stated otherwise, satisfiability means satisfiability with respect to H.
The function adiff(B) for some finite sequence of background sort constants
denotes a constraint that implies different interpretations for the constants in
B. In case the background theory enables a strict ordering < as LRA does, then
the ordering can be used for this purpose. For example, adiff([a, b, c]) is then the
constraint a < b < c. In case the background theory does not enable a strict
ordering, then inequations can express disjointness of the constants. For example,
adiff([a, b, c]) is then the constraint a 6= b∧a 6= c∧ b 6= c. An ordering constraint
has the advantage over an inequality constraint that it also breaks symmetries.
Assuming all constants to be different will eventually enable a satisfiability test
for foreground literals based on purely syntactic complementarity.

The inference rules of SCL(T) are represented by an abstract rewrite system.
They operate on a problem state, a six-tuple Γ = (M ;N ;U ;B; k;D) where M
is a sequence of annotated ground literals, the trail ; N and U are the sets of
initial and learned constrained clauses; B is a finite sequence of constants of
background sorts for instantiation; k counts the number of decisions in M ; and
D is a constrained closure that is either >, Λ ‖ ⊥ · σ, or Λ ‖ C · σ. Foreground
literals in M are either annotated with a number, a level; i.e. , they have the form
Lk meaning that L is the k-th guessed decision literal, or they are annotated
with a constrained closure that propagated the literal to become true, i.e. , they
have the form (Lσ)(Λ‖C∨L)·σ. An annotated literal is called a decision literal if
it is of the form Lk and a propagation literal or a propagated literal if it of in
the form L · σ(Λ‖C∨L)·σ. A ground foreground literal L is of level i with respect
to a problem state (M ;N ;U ;B; k;D) if L or comp(L) occurs in M and the first
decision literal left from L (comp(L)) in M , including L, is annotated with i.
If there is no such decision literal then its level is zero. A ground constrained
clause (Λ ‖ C)σ is of level i with respect to a problem state (M ;N ;U ;B; k;D) if
i is the maximal level of a foreground literal in Cσ; the level of an empty clause
Λ ‖ ⊥ · σ is 0. A ground literal L is undefined in M if neither L nor comp(L)
occur in M . The initial state for a first-order, pure, abstracted H clause set
N is (ε;N ; ∅;B; 0;>), where B is a finite sequence of foreground constants of
background sorts. These constants cannot occur in N , because N is pure. The
final state (ε;N ;U ;B; 0;Λ ‖ ⊥) denotes unsatisfiability of N . Given a trail M
and its foreground literals fgd(M) = {L1, . . . , Ln} an H ordering ≺ induced by
M is any H ordering where Li ≺ Lj if Li occurs left from Lj in M , or, Li is
defined in M and Lj is not.



The transition rules for SCL(T) are

Propagate (M ;N ;U ;B; k;>) ⇒SCL(T) (M,Lσ(Λ‖C0∨L)δ·σ, Λ′σ;N ;U ;B; k;>)

provided Λ ‖ C ∈ (N ∪ U), σ is grounding for Λ ‖ C, adiff(B) ∧ bgd(M) ∧ Λσ
is satisfiable, C = C0 ∨ C1 ∨ L, C1σ = Lσ ∨ . . . ∨ Lσ, C0σ does not contain Lσ,
δ is the mgu of the literals in C1 and L, Λ′σ are the background literals from
Λσ that are not yet on the trail, fgd(M) |= ¬(C0σ), codom(σ) ⊆ B, and Lσ is
undefined in M

The rule Propagate applies exhaustive factoring to the propagated literal with
respect to the grounding substitution σ and annotates the factored clause to the
propagation. By writing M,Lσ(Λ‖C0∨L)δ·σ, Λ′σ we denote that all background
literals from Λ′σ are added to the trail.

Decide (M ;N ;U ;B; k;>) ⇒SCL(T) (M,Lσk+1, Λσ;N ;U ;B; k + 1;>)

provided Lσ is undefined in M , |Kσ| ∈ atoms(gndB(N ∪ U)) for all Kσ ∈ Λσ,
|Lσ| ∈ atoms(gndB(N ∪U)), σ is grounding for Λ, all background literals in Λσ
are undefined in M , adiff(B) ∧ bgd(M) ∧ Λσ is satisfiable, and codom(σ) ⊆ B

The number of potential trails of a run is finite because the rules Propagate
and Decide make sure that no duplicates of background literals occur on the
trail and that only undefined literals over a fixed finite sequence B of constants
are added to the trail. Requiring the constants from B to be different by the
adiff(B) constraint enables a purely syntactic consistency check for foreground
literals.

Conflict (M ;N ;U ;B; k;>) ⇒SCL(T) (M ;N ;U ;B; k;Λ ‖ D · σ)

provided Λ ‖ D ∈ (N ∪ U), σ is grounding for Λ ‖ D, adiff(B) ∧ bgd(M) ∧ Λσ
is satisfiable, fgd(M) |= ¬(Dσ), and codom(σ) ⊆ B

Resolve (M,LρΛ‖C∨L·ρ;N ;U ;B; k; (Λ′ ‖ D ∨ L′) · σ) ⇒SCL(T)

(M,LρΛ‖C∨L·ρ;N ;U ;B; k; (Λ ∧ Λ′ ‖ D ∨ C)η · σρ)

provided Lρ = comp(L′σ), and η = mgu(L, comp(L′))

Note that Resolve does not remove the literal Lρ from the trail. This is
needed if the clause Dσ contains further literals complementary of Lρ that have
not been factorized.

Factorize (M ;N ;U ;B; k; (Λ ‖ D ∨ L ∨ L′) · σ) ⇒SCL(T)

(M ;N ;U ;B; k; (Λ ‖ D ∨ L)η · σ)

provided Lσ = L′σ, and η = mgu(L,L′)

Note that Factorize is not limited with respect to the trail. It may apply to
any two literals that become identical by application of the grounding substitu-
tion σ.



Skip (M,L;N ;U ;B; k;Λ′ ‖ D · σ) ⇒SCL(T) (M ;N ;U ;B; l;Λ′ ‖ D · σ)

provided L is a foreground literal and comp(L) does not occur in Dσ, or L is a
background literal; if L is a foreground decision literal then l = k− 1, otherwise
l = k

Note that Skip can also skip decision literals. This is needed because we
won’t eventually require exhaustive propagation. While exhaustive propagation
in CDCL is limited to the number of propositional variables, in the context of
our logic, for example BS(LRA), it is exponential in the arity of foreground
predicate symbols and can lead to an unfair exploration of the space of possible
inferences, harming completeness, see Example 7.

Backtrack (M,Ki+1,M ′;N ;U ;B; k; (Λ ‖ D ∨ L) · σ) ⇒SCL(T)

(M,Lσ(Λ‖D∨L)·σ, Λ′σ;N ;U ∪ {Λ ‖ D ∨ L};B; i;>)

provided Lσ is of level k, and Dσ is of level i, Λ′σ are the background literals
from Λσ that are not yet on the trail

The definition of Backtrack requires that Lσ is the only literal of level k in
(D ∨ L)σ. Additional occurrences of Lσ in D have to be factorized first before
Backtrack can be applied.

Grow (M ;N ;U ;B; k;>) ⇒SCL(T) (ε;N ;U ;B ∪B′; 0;>)

provided B′ is a non-empty sequence of foreground constants of background
sorts distinct from the constants in B

In case the adiff constraint is implemented by a strict ordering predicate on
the basis of the sequence B, it can be useful to inject the new constants B′ into
B ∪B′ such that the ordering of the constants from B is not changed. This can
help caching background theory results for testing trail satisfiability.

Definition 5. The rules Propagate, Decide, Grow, and Conflict are called con-
flict search rules and the rules Resolve, Skip, Factorize, and Backtrack are called
conflict resolution rules.

Recall that the goal of our calculus is to replace the ordering restrictions of
the hierarchic superposition calculus with a guiding model assumption. All our
inferences are hierarchic superposition inferences where the ordering restrictions
are neglected.

The next two examples show that the adiff constraint is needed to produce
satisfiable trails and that exhaustive propagation cannot be afforded, respec-
tively.

Example 6 (Inconsistent Trail). Consider a clause set N = {R(x, y), x ≤ y ‖
¬R(x, y) ∨ P (x), x ≥ y ‖ ¬R(x, y) ∨ ¬P (y)}; if we were to remove the adiff(B)
constraint from the side conditions of rule Propagate we would be able to obtain
inconsistent trails. Starting with just B = {a, b} as constants it is possible to
propagate three times and obtain the trail M = [R(a, b), P (a), a ≤ b,¬P (b), a ≥
b], M is clearly inconsistent as M |= P (a), M |= ¬P (b) yet a = b.



Example 7 (Exhaustive Propagation). Consider a BS(LRA) clause set N = {x =
0 ‖ Nat(x), y = x + 1 ‖ ¬Nat(x) ∨ Nat(y)} ∪N ′ where N ′ is unsatisfiable and
nothing can be propagated from N ′. Let us further assume that N ′ is satisfiable
with respect to any instantiation of variables with natural numbers. If propa-
gation is not restricted, then the first two clauses will consume all constants
in B. For example, if B = [a, b, c] then the trail [Nat(a), a = 0,Nat(b), b =
a + 1,Nat(c), c = b + 1] will be derived. Now all constants are fixed to natural
numbers. So there cannot be a refutation of N ′ anymore. An application of Grow
will not solve the issue, because again the first two rules will fix all constants to
natural numbers via exhaustive propagation.

Definition 8 (Well-formed States). A state (M ;N ;U ;B; k;D) is well-formed
if the following conditions hold:

1. all constants appearing in (M ;N ;U ;B; k;D) are from B or occur in N .
2. M ∧ adiff(B) is satisfiable
3. N |=H U ,
4. Propagating clauses remain propagating and conflict clauses remain false:

(a) if D = Λ ‖ C ·σ then Cσ is false in fgd(M) and bgd(M)∧adiff(B)∧Λσ
is satisfiable,

(b) if M = M1, Lσ
(Λ‖C∨L)·σ,M2 then Cσ is false in fgd(M1), Lσ is unde-

fined in M1, and bgd(M1) ∧ adiff(B) ∧ Λσ is satisfiable.
5. All clauses in N ∪U are pure. In particular, they don’t contain any constants

from B.

Lemma 9 (Rules preserve Well-Formed States). The rules of SCL(T)
preserve well-formed states.

Definition 10 (Stuck State). A state (M ;N ;U ;B; k;D) is called stuck if
D 6= Λ ‖ ⊥ · σ and none of the rules Propagate, Decide, Conflict, Resolve,
Factorize, Skip, or Backtrack is applicable.

Proposition 11 (Form of Stuck States). If a run (without rule Grow) where
Conflict was applied eagerly ends in a stuck state (M ;N ;U ;B; k;D), then D = >
and all ground foreground literals that can be build from the foreground literals
in N by instantiation with constants from B are defined in M .

Lemma 12 (Stuck States Produce Ground Models). Every stuck state
(M ;N ;U ;B; k;>) produces a ground model, i.e., M ∧ adiff(B) |= gndB(N ∪U).

The next example shows that in some cases the finite partial model of a stuck
state can be turned into an overall model. For some fragments of BS(LRA) this
can be done systematically, see Section 4.

Example 13 (SCL(T) Model Extraction). In some cases it is possible to extract
an overall model from the ground trail of a stuck state of an SCL(T) derivation.
Consider B = [a, b, c] and a satisfiable BS(LRA) constrained clause set N =
{x ≥ 1 ‖ P (x), x < 0 ‖ P (x), 0 ≤ x ∧ x < 1 ‖ ¬P (x), 2x ≥ 1 ‖ P (x) ∨ Q(x)}.



Starting from state (ε;N ; ∅;B; 0;>) and applying Propagate fairly a regular run
can derive the following trail

M = P (a)x≥1‖P (x)·{x 7→a}, a ≥ 1, P (b)x<0‖P (x)·{x 7→b}, b < 0,

¬P (c)0≤x∧x<1‖¬P (x)·{x 7→c}, 0 ≤ c, c < 1, Q(c)2x≥1‖P∨Q(x)·{x 7→c}, 2c ≥ 1

The state (M ;N ; ∅;B; 0;>) is stuck and M |=H gndB(N). Moreover from M
we can generate an interpretation ABS(LRA) of N by generalizing the foreground
constants used for instantiation and interpreting the predicates P and Q as
formulas over ΣB, PA = {q ∈ Q | q < 0 ∨ q ≥ 1} and QA = {q ∈ Q | 2q ≥
1 ∧ q < 1}.

Lemma 14 (Soundness). If a derivation reaches the state (M ;N ;U ;B; k;Λ ‖
⊥ · σ), then N is unsatisfiable.

Definition 15 (Reasonable Run). A sequence of SCL(T) rule applications
is called a reasonable run if an application of rule Decide does not enable an
application of rule Conflict.

Proposition 16 (Avoiding Conflicts after Decide). Let N be a set of con-
strained clauses and (M ;N ;U ;B; k;>) be a state derived from (ε;N ; ∅;B; 0;>).
If an application of rule Decide to (M ;N ;U ;B; k;>) enables an application of
rule Conflict, then Propagate would have been applicable to (M ;N ;U ;B; k;>).

Definition 17 (Regular Run). A sequence of SCL(T) rule applications is
called a regular run if it is a reasonable run, the rule Conflict has precedence
over all other rules, and Resolve resolves away at least the rightmost foreground
literal from the trail.

Proposition 18 (Stuck States at Regular Runs). Lemma 12 also holds for
regular runs.

Example 19 (SCL(T) Refutation). Given a set of foreground constants B =
[a, b, c] and a BS(LRA) constrained clause set N = {C1 : x = 0 ‖ P (x), C2 : y =
x+ 1 ‖ ¬P (x) ∨ P (y), C3 : z = 2 ‖ ¬P (z)} the following is a regular derivation

(ε;N ; ∅;B; 0;>)

⇒Propagate
SCL(T) (P (a)C1·{x 7→a}, a = 0;N ; ∅;B; 0;>)

⇒Propagate
SCL(T) (. . . , P (b)C2·{x 7→a,y 7→b}, b = a+ 1;N ; ∅;B; 0;>)

⇒Propagate
SCL(T) (. . . , P (c)C2·{x 7→b,y 7→c}, c = b+ 1;N ; ∅;B; 0;>)

⇒Conflict
SCL(T) (. . . , P (c)C2·{x 7→b,y 7→c}, c = b+ 1;N ; ∅;B; 0; z = 2 ‖ ¬P (z) · {z 7→ c})

⇒Resolve
SCL(T) (. . . , P (c)C2·{x 7→b,y 7→c}, c = b+ 1;N ; ∅;B; 0;

z = x+ 1 ∧ z = 2 ‖ ¬P (x) · {z 7→ c, x 7→ b})
⇒Skip

SCL(T) (. . . , P (b)C2·{x 7→a,y 7→b}, b = a+ 1;N ; ∅;B; 0;

z = x+ 1 ∧ z = 2 ‖ ¬P (x) · {z 7→ c, x 7→ b})
⇒Resolve

SCL(T) (. . . , P (b)C2·{x 7→a,y 7→b}, b = a+ 1;N ; ∅;B; 0;

z = x+ 1 ∧ z = 2 ∧ x = y + 1 ‖ ¬P (y) · {z 7→ c, x 7→ b, y 7→ a})



⇒Skip
SCL(T) (P (a)C1·{x7→a}, a = 0;N ; ∅;B; 0;

z = x+ 1 ∧ z = 2 ∧ x = y + 1 ‖ ¬P (y) · {z 7→ c, x 7→ b, y 7→ a})
⇒Resolve

SCL(T) (P (a)C1·{x7→a}, a = 0;N ; ∅;B; 0;

z = x+ 1 ∧ z = 2 ∧ x = y + 1 ∧ y = 0 ‖ ⊥ · {z 7→ c, x 7→ b, y 7→ a})
N is proven unsatisfiable as we reach a state in the form (M ;N ;U ;B; k;Λ ‖

⊥ · σ).

Example 20 (SCL(T) Clause learning). Given an initial constant set B = [a]
and a BS(LRA) constrained clause set N = {C1 : x ≥ y ‖ ¬P (x, y) ∨ Q(z),
C2 : z = u+ v ‖ ¬P (u, v) ∨ ¬Q(z)} the following is an example of a regular run

(ε;N ; ∅;B; 0;>)

⇒Decide
SCL(T) (P (a, b)1;N ; ∅;B; 1;>)

⇒Propagate
SCL(T) (P (a, a)1, Q(a)C1·{x 7→a,y 7→a,z 7→a}, a ≥ a;N ; ∅;B; 1;>)

⇒Conflict
SCL(T) (P (a, a)1, Q(a)C1·{u7→a,v 7→a,z 7→a}, a ≥ a;N ; ∅;B; 1;

C2 · {x 7→ a, y 7→ a, z 7→ a})
⇒Resolve

SCL(T) (P (a, a)1, Q(a)C1·{x 7→a,y 7→a,z 7→a}, a ≥ a;N ; ∅;B; 1;x ≥ y ∧ z = u+ v ‖
¬P (x, y) ∨ ¬P (u, v) · {x 7→ a, y 7→ a, z 7→ a, u 7→ a, v 7→ a})

⇒Skip∗
SCL(T) (P (a, a)1;N ; ∅;B; 1;x ≥ y ∧ z = u+ v ‖

¬P (x, y) ∨ ¬P (u, v) · {x 7→ a, y 7→ a, z 7→ a, u 7→ a, v 7→ a})
⇒Factorize

SCL(T) (P (a, a)1;N ; ∅;B; 1;x ≥ y ∧ z = x+ y ‖
¬P (x, y) · {x 7→ a, y 7→ a, z 7→ a})

⇒Backtrack
SCL(T) (¬P (a, a)(x≥y∧z=x+y‖¬P (x,y))·{x 7→a,y 7→a}, a ≥ a, a = a+ a;N ;

{x ≥ y ∧ z = x+ y ‖ ¬P (x, y)};B; 1;>)

The learned clause x ≥ y ∧ z = x+ y ‖ ¬P (x, y) contains two distinct variables
even if we had to use a single constant for instantiations in conflict search.

Corollary 21 (Regular Conflict Resolution). Let N be a set of constrained
clauses. Then any conflict in an SCL(T) regular run admits a regular conflict
resolution if the run starts from state (ε;N ; ∅;B; 0;>).

Lemma 22 (Non-Redundant Clause Learning). Let N be a set of con-
strained clauses, and let Λn ‖ D∨L be a clause learned in an SCL(T) regular run
such that (ε;N ; ∅;B; 0;>) ⇒∗SCL(T)⇒

Backtrack
SCL(T) (M,Lσ(Λn‖D∨L)·σ, Λ′nσ;N ;U ∪

{Λn ‖ D ∨L};B; i;>). Then Λn ‖ D ∨L is not redundant with respect to any H
ordering ≺ induced by the trail M .

Of course, in a regular run the ordering of foreground literals on the trail
will change, i.e., the ordering underlying Lemma 22 will change as well. Thus
the non-redundancy property of Lemma 22 reflects the situation at the time of
creation of the learned clause. A non-redundancy property holding for an overall
run must be invariant against changes on the ordering. However, the ordering
underlying Lemma 22 also entails a fixed subset ordering that is invariant against
changes on the overall ordering. This means that our dynamic ordering entails



non-redundancy criteria based on subset relations including forward redundancy.
From an implementation perspective, this means that learned clauses need not
to be tested for forward redundancy. Current resolution, or superposition based
provers spent a reasonable portion of their time in testing forward redundancy
of newly generated clauses. In addition, also tests for backward reduction can
be restricted knowing that learned clauses are not redundant.

Lemma 23 (Termination of SCL(T)). Let N be a set of constrained clauses
and B be a finite set of background constants. Then any regular run with start
state (ε;N ; ∅;B; 0;>) that uses Grow only finitely often terminates.

Theorem 24 (Hierarchic Herbrand Theorem). Let N be a finite set of
clauses. N is unsatisfiable iff there exists a finite set N ′ = {Λ1 ‖ C1, . . . , Λn ‖
Cn} of variable renamed copies of clauses from N and a finite set B of fresh
constants and a substitution σ, grounding for N ′ where codom(σ) = B such that∧
i Λiσ is T B satisfiable and

∧
i Ciσ is first-order unsatisfiable over ΣF .

Finally, we show that an unsatisfiable clause set can be refuted by SCL(T)
with any regular run if we start with a sufficiently large sequence of constants
B and apply Decide in a fair way. In addition, we need a Restart rule to recover
from a stuck state. Of course, an unrestricted use of rule Restart immediately
leads to non-termination.

Restart (M ;N ;U ;B; k;>) ⇒SCL(T) (ε;N ;U ;B; 0;>)

Theorem 25 (Refutational Completeness of SCL(T)). Let N be an un-
satisfiable clause set. Then any regular SCL(T) run will derive the empty clause
provided (i) Rule Grow and Decide are operated in a fair way, such that all pos-
sible trail prefixes of all considered sets B during the run are eventually explored,
and (ii) Restart is only applied to stuck states.

Condition (i) of the above theorem is quite abstract. It can, e.g., be made
effective by applying rule Grow only after all possible trail prefixes with respect
to the current set B have been explored and to make sure that Decide does not
produce the same stuck state twice.

4 SCL(T) Decides BS(BD)

As mentioned in Lemma 12, all stuck states produce ground models for gndB(N).
This does not mean that all stuck states produce a full hierarchic algebra A that
satisfies N , i.e., a model over the full and potentially infinite carrier sets of our
theory (e.g., R) instead of a model over a finite set of sample elements (i.e., our
constants B). In this section, we explain on the example of the Bernays-Schoen-
finkel clause fragment with bounded difference constraints (BS(BD)) how to
formalize an extraction criterion, i.e., a condition that guarantees that a satisfy-
ing algebra A can be extracted from a stuck state that fulfills the condition. We
also explain how A can be constructed explicitly from such a stuck state and
which conditions on N guarantee that SCL(T) finds a stuck state that fulfills
the extraction criterion.



Definition 26 (BS(BD)). The Bernays-Schoenfinkel fragment with bounded dif-
ference constraints is a subset of BS(LRA) that only allows theory atoms of the
form x / c, x / y, or x− y / c where c may be any integer number, x, y ∈ X , and
/ ∈ {≤, <, 6=,=, >,≥}. Moreover, we require for all considered clauses Λ‖C that
the theory part Λ may only contain an atom of the form x−y / c if Λ also bounds
x and y, i.e., Λ also contains atoms cx ≤ x, x ≤ dx, cy ≤ y, and y ≤ dy, where
cx, dx, cy, dy are integers.

For the rest of this section we fix a finite set of BS(BD) clauses N , where κ is
the maximal absolute value of any integer occurring in N and η is the maximal
number of distinct variables in any single clause in N . Moreover, we define the
function fr(b) = b−bbc that returns the fractional/decimal part of a real number.

The first step of defining an extraction criterion is the definition of an equiv-
alence relation that ranges over all possible argument tuples/grounding substi-
tutions for literals and clauses in N . This equivalence relation must fulfill two
conditions: (i) it has only finitely many equivalence classes and (ii) for every
theory atom A in N it holds that A is satisfied by all elements in an equivalence
class or by none. Unbounded region equivalence '̂ηκ is such an equivalence class
for BS(BD):

Definition 27 (Unbounded Region Equivalence '̂ηκ [24,25]). We define
the equivalence relation '̂ηκ on R =

⋃η
k=0 Qk in such a way that r̄ '̂ηκ s̄ for

r̄, s̄ ∈ R if and only if

1. r̄ and s̄ have the same dimension, i.e., r̄ = 〈r1, . . . , rm〉 and s̄ = 〈s1, . . . , sm〉;
2. for every i

(a) ri > κ if and only if si > κ,
(b) ri < −κ if and only if si < −κ,
(c) if −κ < ri, si < κ, then bric = bsic, and
(d) if −κ < ri, si < κ, then fr(ri) = 0 if and only if fr(si) = 0;

3. for all i, j
(a) if ri, rj > κ or ri, rj < −κ, then ri ≤ rj if and only if si ≤ sj,
(b) if −κ < ri, rj < κ, then fr(ri) ≤ fr(rj) if and only if fr(si) ≤ fr(sj).

Corollary 28. Let A be a BD atom and let σr = {x1 7→ r1, . . . , xm 7→ rm} and
σs = {x1 7→ s1, . . . , xm 7→ sm} be two grounding assignments for A such that
r̄ '̂ηκ s̄. Then A · σr is satisfied if and only if A · σs is satisfied.

The first condition for our equivalence class is necessary so we can express all
argument tuples over our theories potentially infinite carrier sets with argument
tuples over just a finite set of sample elements (i.e., our constants B). The second
condition is necessary because the algebras we are looking for are supposed to
be uniform in a given equivalence class, i.e., for every atom A in N it holds that
A is satisfied by all elements in an equivalence class or by none.

Definition 29 ('̂ηκ-Uniform Algebras [24,25]). Consider an algebra A for
N . We call A '̂ηκ-uniform over N if it interprets all '̂ηκ-equivalence classes
uniformly, i.e., for all predicates P in N and all r̄ '̂ηκ s̄ with m = arity(P ) and
r̄, s̄ ∈ Qm it holds that r̄ ∈ PA if and only if s̄ ∈ PA.



Based on these definitions, an extraction criterion guarantees the following
properties for a stuck state (M ′;N ;U ;B; k;>): (i) our trail can be extended to
M = M ′,Mp in such a way that there exists an argument tuple in Bm for every
equivalence class and (ii) the literals in fgd(M ′) describe a uniform model, i.e.,
for every literal |L| ∈ atoms(N) it holds that L ·σ ∈M ′ if and only if L ·τ ∈M ′,
where σ and τ are two grounding substitutions over B that belong to the same
equivalence class.

Definition 30 ('̂ηκ-Extraction-Criterion). A stuck state (M ′;N ;U ;B; k;>)
fulfills the '̂ηκ-extraction-criterion if:

1. B = {b1, ..., b|B|} is large enough, i.e., |B| ≥ 2κ · (η + 1) + 2η + 1
2. M ′ has a '̂ηκ-uniform trail extension M,Mp such that M ′ ∧Mp ∧ adiff(B)

is satisfiable and Mp is a sequence of theory atoms constructed as follows:3

(a) Let π : N → {−κ − 1,−κ, . . . , κ − 1, κ} be the function with π(i) =
−κ − 1 + bi/(η + 1)c for 1 ≤ i ≤ 2κ · (η + 1) + η, and π(i) = κ for
2κ · (η + 1) + η < i ≤ |B|.

(b) Let ρ : N → N be the function with ρ(i) = i%(η + 1) for 1 ≤ i ≤
2κ·(η+1)+η, and ρ(i) = i−2κ·(η+1)+η+1 for 2κ·(η+1)+η < i ≤ |B|.

(c) Intuitively, we use π(i) and ρ(i) to partition the constants in B over
the intervals (−∞,−κ), [−κ,−κ+ 1), . . . , [κ− 1,−κ)[κ,∞) such that the
interval (−∞,−κ) contains η constants, each interval [i, i+1) with −κ ≤
i < κ contains η + 1 constants, and the interval [κ,∞) contains at least
η + 1 constants.

(d) Mp contains bi < bi+1 for 1 ≤ i < |B|.
(e) Mp contains bi = k for −κ ≤ π(i) = k ≤ κ and ρ(i) = 0.
(f) Mp contains bi < k + 1 for −κ− 1 ≤ π(i) = k < κ and ρ(i) > 0.
(g) Mp contains bi > k for −κ ≤ π(i) = k ≤ κ and ρ(i) > 0.
(h) Mp contains bi − bj / 1 for −κ ≤ π(j) = π(i) − 1 < κ − 1, ρ(i) / ρ(j),

and / ∈ {<,=, >}.
3. fgd(M ′,Mp) is '̂ηκ-uniform, i.e., if P (r̄) ∈ fgd(M ′,Mp) and r̄ '̂ηκ s̄ for

m = arity(P ) and r̄, s̄ ∈ Bm, then P (s̄) ∈ fgd(M ′,Mp).4

As a result of these properties, any assignment β for the constants B defines
an algebra uniform to our equivalence relation.

Lemma 31 ('̂ηκ-Uniform Model Extraction). Let (M ′;N ;U ;B; k;>) be a
stuck SCL(T) state that fulfills the '̂ηκ-extraction-criterion and let β : B → Q be
a satisfying assignment for the '̂ηκ-uniform trail extension M = M ′,Mp. Then
there exists a '̂ηκ-uniform algebra A satisfying N such that

PA = {s̄ ∈ Rm | ∃t̄ ∈ Bm, s̄ '̂ηκ 〈β(t1), . . . , β(tm)〉 and P (t̄) ∈M}
for all predicates P of arity m in N .

3 The added theory atoms correspond exactly to the different cases in the unbounded
region equivalence relation.

4 r̄ '̂ηκ s̄ can be checked by comparing the atoms in Mp or by fixing a satisfying
assignment for M ′ ∧Mp ∧ adiff(B).



Proof. We have to prove that A satisfies all clauses C ∈ N for all substitutions
σ : vars(C) → R. We do so by selecting one arbitrary substitution σ and by
defining Q = {qj ∈ (0, 1) | ∃q′ ∈ codom(σ) ∩ [−κ, κ], fr(q′) = qj 6= 0}, i.e., the
set of fractional parts that occur in σ’s codomain. Moreover, we assume that
q1 < . . . < qn is the order of the elements in Q = {q1, . . . , qn}. Since we chose
B large enough, we can now create a substitution τ : codom(σ) → B such that
τ(q′) = bi if:

1. −κ ≤ bq′c < κ, π(i) = bq′c, fr(q′) = qj ∈ Q, and ρ(i) = j,
2. −κ ≤ bq′c ≤ κ, π(i) = bq′c, fr(q′) = 0, and ρ(i) = 0,
3. if q′ is the j-th smallest element in codom(σ) that is smaller than −κ and
π(i) = −κ− 1, or

4. if q′ is the j-th smallest element in codom(σ) that is larger than κ and
π(i) = κ.

If we concatenate σ and τ , we get M |= C · σ · τ because (M ′;N ;U ;B; k;>) is
a stuck state (i.e., M |= M ′ |= gndB(N), Lemma 12). If we concatenate σ, τ ,
and β together, we get a '̂ηκ-equivalent substitution σ · τ · β for all literals L in
C, i.e., if vars(x̄) = vars(L), x̄ · σ = s̄ and x̄ · σ · τ · β = r̄, then s̄ '̂ηκ r̄. The
way we constructed A entails that A |= P (x̄) · σ if and only if P (x̄) · σ · τ ∈ M
because x̄ · σ '̂ηκ x̄ · σ · τ · β. Similarly, Corollary 28 entails that a theory atom
A · σ is satisfied if and only if A · σ · τ · β is satisfied. Hence, A |= C · σ because
M |= C · σ · τ .

If the rules of SCL(T) are applied in a way that all trail prefixes are explored,
then SCL(T) is also guaranteed to visit a stuck state that fulfills the extraction
criterion whenever there exists an algebra A that is uniform to our equivalence
relation and satisfies N .

Lemma 32 ('̂ηκ-Uniform Model Guarantee). Let A be a '̂ηκ-uniform alge-
bra that satisfies N and let B be a sequence of constants that is large enough,
i.e., |B| ≥ 2κ · (η + 1) + 2η + 1. Then any regular SCL(T) run starting in state
(ε;N ;U ;B; 0;>) (with N |=H U) will encounter a stuck state that satisfies the
'̂ηκ-extraction-criterion if SCL(T) explores all possible trail prefixes for B.

Proof. We can construct a trail prefix M ′ for B that corresponds to a stuck
state that satisfies the '̂ηκ-extraction-criterion and from which we can extract
A. The trail prefix M ′ is constructed as follows: First construct a set of numbers
Q = {q0, . . . , qη} ⊆ [0, 1) such that q0 = 0 and q0 < . . . < qη. Next we construct
a set of numbers

Q̂ =
{
q̂kj | qj ∈ Q, k ∈ {−κ− 1, . . . , κ}, and q̂kj = qj + k

}
∪{

q̂κj | i ∈ N, 2κ · (η + 1) + η < i ≤ |B|, j = i− 2κ · (η + 1) + η + 1, q̂κj = j + κ
}

.

Each element in q̂kj ∈ Q̂ corresponds to one constant bi. We denote this by an

assignment β : B → Q̂ such that β(bi) = q̂kj if π(i) = k and ρ(i) = j. Now given
these sets our trail prefix M ′ contains P (s̄)/comp(P (s̄)) as a decision literal if

and only if (i) P is a predicate in N , m = arity(P ), s̄ ∈ Bm, r̄ ∈ Q̂m, (ii) if
st = bi, then rt = β(bi), and (iii) r̄ ∈ PA/r̄ 6∈ PA. Moreover, we add to M ′

the following theory atoms as part of the first decision: we add L · σ to M ′ if



there exists a grounding substitution σ for |L| ∈ bgd(atoms(gndB(N))) such
that L · σ · β is satisfied.

The state (M ′;N ;U ;B; k;>) (with k = | fgd(M ′)|) is a reachable stuck state
because (i) all atoms |L| ∈ atoms(gndB(N)) are defined in M ′, (ii) M ′∧adiff(B)
is satisfiable, e.g., by β, and (iii) M ′∧adiff(B) |= gndB(N) because for all C ∈ N ,
(iii.i) A |= C · σ · β and (iii.ii) L · σ ∈ C · σ is in M ′ if and only if A |= L · σ · β.

The state (M ′;N ;U ;B; k;>) also has a '̂ηκ-uniform trail extension M ′ ∧Mp

because β by definition also satisfies the atoms in Mp and fgd(M ′,Mp) is '̂ηκ-
uniform because the literals fgd(M ′,Mp) · β are '̂ηκ-uniform.

The above lemma explains how we can construct conditions for clause sets
N that guarantee that SCL(T) finds a satisfying algebra A for N (under certain
fairness conditions). The condition just has to imply that N is satisfied by an
algebra A that is uniform to our equivalence relation. In the case of BS(BD),
we can prove this for all satisfiable clause sets N . This means SCL(T) can be
turned into a decision procedure for BS(BD).

Lemma 33 (BS(BD) Uniform Satisfiability [24,25]). If N is satisfiable,
then it is satisfied by an '̂ηκ-uniform algebra A.

Corollary 34 (SCL(T) Decides BS(BD)). SCL(T) is a decision procedure for
BS(BD) if (i) Restart is only applied to stuck states, (ii) Grow is only applied
after a stuck state has been encountered for the current sequence of constants
B, (iii) rules Grow, Restart, and Decide are operated in a fair way, such that
no stuck state is visited more than once, and (iv) it explores all possible trail
prefixes for some B with |B| ≥ 2κ · (η + 1) + 2η + 1.

Example 35 (B too Small for Model Extraction). If our set of constants B is too
small, then a stuck state might not imply an interpretation for all relevant '̂ηκ-
equivalence-classes. The same is true, if our constants are distributed unfairly
over Q, e.g., there exist no or not enough constants to represent an interval
[i, i+ 1) for −κ ≤ i, < κ. Consider B = [a, b] and a satisfiable BS(BD) clause set

N = { 0 ≤ x ∧ x < 1 ∧ −1 ≤ y ∧ y < 0 ∧ x− y = 1‖P (x, y),
0 ≤ x ∧ x < 1 ∧ −1 ≤ y ∧ y < 0 ∧ x− y 6= 1‖¬P (x, y)}.

Starting from state (ε;N ; ∅;B; 0;>), a regular run can derive the following trail
M = [P (b, a)0≤x∧x<1∧−1≤y∧y<0∧x−y=1‖P (x,y)·{y 7→a,x7→b}, 0 ≤ b, b < 1,

−1 ≤ a, a < 0, b− a = 1, P (a, a)1, P (b, b)2, P (a, b)3]
The state (M ;N ; ∅;B; 0;>) is stuck and M |=H gndB(N). However, M does
not satisfy the '̂ηκ-extraction-criterion because B is too small. This makes sense
because M does not define P for all '̂ηκ-equivalence-classes, e.g., in all algebras
P (x, y) should be false for −1 ≤ y < 0, 0 ≤ x < 1, x − y 6= 1. We need at least
one additional constant for each of the intervals [−1, 0) and [0, 1), and two for
the intervals (−∞,−1) and [1,∞).

Example 36 (Successful BS(BD) model extraction). Consider B = [a, b, c, d, e, f,
g, h, i, j, k] and a satisfiable BS(BD) clause set N = {0 ≤ x∧x < 1∧−1 ≤ y∧y <
0∧x−y = 1‖P (x, y), 0 ≤ x∧x < 1∧−1 ≤ y∧y < 0∧x−y 6= 1‖¬P (x, y)}. Starting



from state (ε;N ; ∅;B; 0;>), a regular run can derive the trail M = M ′,M ′′,
where M ′′ contains decisions ¬P (x, y)·σ for all groundings of P (x, y) not defined
in M ′ and

M ′ = [P (f, c)0≤x∧x<1∧−1≤y∧y<0∧x−y=1‖P (x,y)·{x7→f,y 7→c},
0 ≤ f, f < 1,−1 ≤ c, c < 0, f − c = 1,
P (g, d)0≤x∧x<1∧−1≤y∧y<0∧x−y=1‖P (x,y)·{x 7→g,y 7→d},
0 ≤ g, g < 1,−1 ≤ d, d < 0, g − d = 1,
P (h, e)0≤x∧x<1∧−1≤y∧y<0∧x−y=1‖P (x,y)·{x 7→h,y 7→e},
0 ≤ h, h < 1,−1 ≤ e, e < 0, h− e = 1,
¬P (f, d)0≤x∧x<1∧−1≤y∧y<0∧x−y 6=1‖¬P (x,y)·{x7→f,y 7→d}, f − d 6= 1,
¬P (f, e)0≤x∧x<1∧−1≤y∧y<0∧x−y 6=1‖¬P (x,y)·{x 7→f,y 7→e}, f − e 6= 1,
¬P (g, c)0≤x∧x<1∧−1≤y∧y<0∧x−y 6=1‖¬P (x,y)·{x 7→g,y 7→c}, g − c 6= 1,
¬P (g, e)0≤x∧x<1∧−1≤y∧y<0∧x−y 6=1‖¬P (x,y)·{x 7→g,y 7→e}, g − e 6= 1,
¬P (h, c)0≤x∧x<1∧−1≤y∧y<0∧x−y 6=1‖¬P (x,y)·{x 7→h,y 7→c}, h− c 6= 1,
¬P (h, d)0≤x∧x<1∧−1≤y∧y<0∧x−y 6=1‖¬P (x,y)·{x 7→h,y 7→d}, h− d 6= 1]

The state (M ;N ; ∅;B; 0;>) is stuck and M |=H gndB(N). Moreover, M satisfies
the '̂ηκ-extraction-criterion with the '̂ηκ-uniform extension Mp such that:

Mp = [a < b, b < c, c < d, d < e, e < f, f < g, g < h, h < i, i < j, j < k,
a < −1, b < −1, c = −1,−1 < d, d < 0,−1 < e, e < 0, f = 0,
0 < g, g < 1, 0 < h, h < 1, i = 1, 1 < j, 1 < k,
h− e = 1, h− d > 1, g − d = 1, g − e < 1]

One satisfying assignment for M,Mp is β = {a 7→ −1.7, b 7→ −1.3, c 7→ −1, d 7→
−0.7, e 7→ −0.3, f 7→ 0, g 7→ 0.3, h 7→ 0.7, i 7→ 1, j 7→ 2, k 7→ 3} The extracted
algebra A looks as follows:
PA = {(x, y) ∈ R2 | (x, y) '̂ηκ (0.7,−0.3)} ∪ {(x, y) ∈ R2 | (x, y) '̂ηκ (0.3,−0.7)}∪

{(x, y) ∈ R2 | (x, y) '̂ηκ (0,−1)}
= {(x, y) ∈ R2 | 0 ≤ x < 1,−1 ≤ y, y < 0, fr(x) = fr(y)}∪
{(x, y) ∈ R2 | 0 ≤ x < 1,−1 ≤ y, y < 0, fr(x) = fr(y)}∪
{(x, y) ∈ R2 | 0 ≤ x < 1,−1 ≤ y, y < 0, fr(x) = fr(y)}

= {(x, y) ∈ R2 | 0 ≤ x < 1,−1 ≤ y, y < 0, x− y = 1}

Example 37 (Stuck State is not '̂ηκ-Uniform). Consider almost the same run as
in the previous example. The only difference is that M ′′ contains the decision
P (a, c). Then the state (M ;N ; ∅;B; 0;>) is reachable by a reasonable run, still
stuck, M |=H gndB(N), and β = {a 7→ −1.7, b 7→ −1.3, c 7→ −1, d 7→ −0.7, e 7→
−0.3, f 7→ 0, g 7→ 0.3, h 7→ 0.7, i 7→ 1, j 7→ 2, k 7→ 3} is still a satisfying as-
signment for M,Mp. However, M does not satisfy the '̂ηκ-extraction-criterion
because the predicates in M are not uniformly defined. To be more precise, we
have two different definitions for P and the equivalence class {(x, y) ∈ Q2 | x <
−κ = −1, y = −κ = −1}, viz., P (a, c),¬P (b, c) ∈M and (a, c) '̂ηκ (b, c).

It might seem like a reasonable idea to improve SCL(T) for BS(BD) by
adding the '̂ηκ-uniform trail extension Mp directly at the beginning to the trail.
Intuitively, this will only remove stuck states that cannot fulfill the extraction
criterion and we will still find a stuck state that satisfies the extraction criterion
if there exists one. However, it is not always possible to get a resolution proof
for unsatisfiability if we add the '̂ηκ-uniform trail extension Mp greedily.



Example 38 (No resolution within extraction criterion). Consider the unsatisfi-
able BS(BD) clause set N = {0 < x ∧ x < 1 ∧ 0 < y ∧ y < 1 ∧ x− y < 0‖P (y),
0 < x ∧ x < 1 ∧ 0 < y ∧ y < 1 ∧ x − y < 0‖¬P (x)}. The partition of constants
defined in the '̂ηκ-uniform trail extension Mp assigns only two constants a, b to
the interval (0, 1) because no clause contains more than two variables. It is how-
ever impossible to get a refutation proof for the unsatisfiability of the above two
clauses if we only have two constants a < b in the interval (0, 1). If we add the
'̂ηκ-uniform trail extension Mp directly at the beginning of our regular SCL(T)
run, then we must end up in a stuck state that contains the literals P (b) and
¬P (a) on the trail. This means that SCL(T) neither derives a clause Λ‖⊥, nor
does it encounter a stuck state that has a uniform model.

5 SCL(T) Extensions and Discussion

We have presented the new calculus SCL(T) for pure clause sets of first-order
logic modulo a background theory. The calculus is sound and refutationally
complete. It does not generate redundant clauses. Moreover, it constitutes a
decision procedure for certain decidable fragments of pure clause sets, such as
BS(BD), and can even return an explicit satisfying algebra A in the case that
the clause set is satisfiable.

There are further extensions to pure clause sets that still enable a refutation-
ally complete calculus. In particular, first-order function symbols that do not
range into a background theory sort and equality. The properties of the SCL(T)
calculus rely on finite trails with respect to a fixed, finite set B of constants. By
adding non-constant first-order function symbols trails will typically be infinite
without further restrictions. Finite trails can, e.g., still be obtained by limiting
nestings of function symbols in terms. Thus it seems to us that an extension
to first-order function symbols that do not range into a background theory sort
should be possible while keeping the properties of SCL(T). From an abstract
point of view, also the addition of equality on the first-order side should be
possible, because there exist complete procedures such as hierarchic superposi-
tion [1,4]. Then also foreground function symbols may range into a background
theory sort, but the respective terms have to satisfy further conditions in order
to preserve completeness. However, even in the pure first-order case there has
not been a convincing solution so far of how to combine equational reasoning
with explicit model building. One challenge is how to learn a clause from a con-
flict out of a partial model assumption that enjoys ordering restrictions on terms
occurring in equations. If this can be sufficiently solved, the respective calculus
should also be extendable to a hierarchic set up.

An efficient implementation of SCL(T) requires efficient algorithmic solutions
to a number of concepts out of the theory. For fast model building an efficient
implementation of Propagate is needed. This was our motivation for adding the
all-different constraints on the constants, because they enable syntactic testing
for complementary or defined literals. In addition, satisfiability of constraints
needs to be tested. The trail behaves like a stack and it is ground. This fits



perfectly the strengths of SMT-style satisfiability testing. Dealing with the non-
domain constants out of the set B needs some care. They behave completely
symmetric with respect to the instantiation of clauses in (N ∪ U). An easy
way to break symmetry here is the addition of linear ordering constraints on
these constants. If more is known about the specific fragment some clause set
N belongs to, additional constraints with respect to the constraints or domain
constants out of (N ∪U) may be added as well. This is for example the case for
the BS(BD) fragment. We could simply add the atoms of the '̂ηκ-uniform trail
extension Mp at the beginning to the trail. This would exclude many stuck states
that cannot possible fulfill the extraction criterion and would therefore reduce
the search space for SCL(T). Completeness would also be preserved because we
either find a stuck state that satisfies the extraction criterion or the problem is
unsatisfiable. Note, however, that we would not always get a refutation proof as
a certificate of unsatisfiability.

If we add the '̂ηκ-uniform trail extension Mp at the beginning to the trail,
then all groundings of theory atoms can be automatically simplified to true or
false. This means we could implement propagation for SCL(T) over BS(BD) by
feeding a SAT solver with all groundings of clauses and using its propagation
module. We might even reduce the search space of the SAT solver by replacing
all ground literals |L| = P (s̄) to |L′| = P (r̄) such that r̄ is the minimal element
in the s̄ equivalence class. This would guarantee that only '̂ηκ-uniform literals
are propagated. Conflict analysis would still need to be handled outside of the
SAT solver so we can learn the much stronger non-ground clauses.

Checking whether a trail is '̂ηκ-uniform (as required by Definition 30) can
be done efficiently (in run-time O(|M | log(|M |))). We just have to sort the fore-
ground literals |L| = P (s̄) first by predicate P and then by the smallest vector
r̄ (according to a lexicographic order over B) such that s̄ '̂ηκ r̄. The trail is '̂ηκ-
uniform if and only if no two neighbors P (r̄), ¬P (s̄) in the sorted list have s̄'̂ηκ r̄.
We could also add a new rule to the calculus that adds all '̂ηκ-uniform instances
of the same literal as soon as one has been derived.

Exploring all trail prefixes, as required by Theorem 25 and Corollary 34,
requires book-keeping on visited stuck states and an efficient implementation of
the rule Restart. The former can be done by actually learning new clauses that
represent stuck states. Such clauses are not logical consequences out of N , so
they have to be treated specially. In case of an application of Grow all these
clauses and all the consequences thereof have to be updated. An easy solution
would be to forget the clauses generated by stuck states. This can be efficiently
implemented. Concerning the rule Restart, from the SAT world it is known that
restarts do not have to be total [20], i.e., if a certain prefix of a trail will be
reproduced after a restart, it can be left on the trail. It seems possible to extend
this concept towards SCL(T).

As future work, we plan to implement SCL(T) and define extraction criteria
for other (arithmetic) theories.
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