Obvious Positions

A smaller set of positions from ϕ, called *obvious positions*, is still preventing the explosion and given by the rules:

(i) p is an obvious position if $\phi|_p$ is an equivalence and there is a position $q < p$ such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or

(ii) pq is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ, $\phi|_p$ is a disjunctive formula in ϕ, $q \neq \epsilon$, and for all positions r with $p < r < pq$ the formula $\phi|_r$ is not a conjunctive formula.

A formula $\phi|_p$ is conjunctive in ϕ if $\phi|_p$ is a conjunction and $\text{pol}(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a disjunction or implication and $\text{pol}(\phi, p) \in \{0, -1\}$.

Analogously, a formula $\phi|_p$ is disjunctive in ϕ if $\phi|_p$ is a disjunction or implication and $\text{pol}(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a conjunction and $\text{pol}(\phi, p) \in \{0, -1\}$.