
3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT207

where M = ⊥ if Nα is unsatisfiable and M = {L1, . . . , Ln} if {L1, . . . , Ln} is a
model for Nα

Instantiate (N ⊎ {C ∨ A,D ∨ ¬B},M) ⇒IGEN (N ⊎ {C ∨ A,D ∨ ¬B, (C ∨
A)σ, (D ∨ ¬B)σ},⊤)
where M = {L1, . . . , Ln}, σ = mgu(A,B), and σ is a proper instantiator of A
or B

It is important that the grounding ofNα is obtained by substituting the same
constant α for all variables, for otherwise the calculus becomes incomplete. For
example, the two unit clauses P (x, y);¬P (x, x) are unsatisfiable. A grounding
P (a, b);¬P (a, a) results in the model INα

= {P (a, b);¬P (a, a)} but Instantiate
is not applicable, because the unifier {x 7→ y} is not a proper instantiater for
both literals.

The model M is actually not used in rule Instantiate. The proof of the
theorem below, however, shows that it is sufficient to consider a minimal false
clause C ∨A or D ∨ ¬B with respect to IN , for the inference.

Theorem 3.16.4 (Completeness of InstGen). Let (N,⊤)⇒∗
IGEN (N ′,M) and

let (N ′,M) be a final state. If N is satisfiable then M ̸= ⊥ and IN ′ |= N ′.

Proof. Suppose IN ′ is not a model for N ′. Then there exists a minimal ground
closure C · γ such that IN ′ ̸|= Cγ. Obviously, C · γ was not productive in
IN ′ . So there is no literal L ∈ C such that Lγ is undefined in IC·γ and Lα ∈
INα

. However, Kα ∈ INα
for some K ∈ C because INα

|= Nα. So C = C ′ ∨
K and comp(Kγ) ∈ IC·γ . Therefore, there is some ground instance Dσ =
(D′ ∨K ′)σ that produces comp(Kγ) in IC·γ , i.e., comp(K ′)σ = Kγ. Let ρ =
mgu(K, comp(K ′)) and γ′ be a substitution such that (D′ ∨K ′)ργ′ = Dσ and
(C ′ ∨K)ργ′ = Cγ.

Firstly, ρ is a proper instatiator for K ′ or K. Assume not, then Kα =
comp(K ′

α) so both K ′
α ∈ INα

and comp(K ′
α) ∈ INα

, a contradiction.

Therefore, secondly, ρ is a proper instatiator for K ′ or K leading to two
cases. If ρ is a proper instatiator for K ′, i.e., it instantiates a variable in K ′

with some constant then (D′ ∨K ′)ρ · γ′ ≺ (D′ ∨K ′) · σ contradicting that N ′

is saturated or (D′ ∨K ′) · σ is a minimal representation.

If ρ is a proper instatiator for K, it instantiates a variable in K with some
constant then (C ′∨K)ρ·γ′ ≺ (C ′∨K)·γ contradicting that that N ′ is saturated
or C · γ was a minimal ground closure.

Redundancy can be defined analogously to superposition as well. A ground
closure C ·σ is redundant in a clause set N , if there are closures C1 ·σ1, . . . , Cn ·
σn from clauses C1, . . . , Cn from N such that Ci · σi ≺ C · σ for all i and
C1σ1, . . . , Cnσn |= Cσ. A clause C from N is redundant if all its ground closures
C · σ are redundant.

208 CHAPTER 3. FIRST-ORDER LOGIC

3.16.4 SCL Clause Learning from Simple Models

The basic idea of SCL is to lift the principles of CDCL, Section 2.9, to first-order
logic: (i) operating wih respect to a partial model assumption represented by a
trail, (ii) learning only non-redundant clauses out of false clauses with respect
to the trail, (iii) finding models in case no conflict occurs. It is called clause
learning from simple models, because the trail is restricted to ground literals.
The motivation fot this it twfold: (i) deciding falsity of a first-order clause with
variables can be done practically efficiently and (ii) different ground literals
don’t have common instances resulting in efficient trail operations. Nevertheless,
non-redundant clauses with variables can be learned, by using the grounding
falsifying a clause to guide resolution stpes on the level of clauses with variables.

Another issue that needs to be addressed is that first-order Herbrand models
are infinite, in general. Here the idea of SCL is to restrict the reasoning with
respect to some ground literal β, requiring that any trail literal is smaller to β
with respect to some well-founded, total, strict ordering ≺β on ground atoms
such that for any ground atom A there are only finitely many ground atoms B
with B ≺β A [?]. For example, a KBO, Definition 3.11.9, could be used to this
end.

Then if some model with respect to β and ≺β is found SCL stops in a stuck
state. Now this partial, finite model might be contained in some model that even-
tually satisfies the overall clause set. A question that is undecidable, in general,
and is not addressed here although it leads to interesting research questions. Or
the restriction to β and ≺β was too restrictive to derive a contradiction. Here
a new rule Grow is added that strictly extends β. As first-order unsatisfiability
implies unsatisfiability with respect to a finite set of ground instances, a suitably
chosen β guarantees the derivation of a contradiction via SCL.

The inference rules of SCL operate on a problem state, a six-tuple
(Γ;N ;U ;β; k;D) where Γ is a sequence of annotated ground literals, the trail ;
N and U are the sets of initial and learned clauses; β is a ground literal lim-
iting the size of the trail; k counts the number of decisions; and D is a status
closure. A closure is denoted as C · σ and is a pair of a clause C and a ground-
ing substitution σ. Then D is either true ⊤, false ⊥, abbreviations for closures
⊤ · σ, ⊥ · σ, respectively, or C · σ for a non-empty clause C. Literals in Γ are
either annotated with a number, also called a level; i.e., they have the form Lk

meaning that L is the k-th guessed decision literal, or they are annotated with
a closure that propagated the literal to become true. A ground literal L is of
level i with respect to a problem state (Γ;N ;U ;β; k;D) if L or comp(L) occurs
in Γ and the first decision literal left from L (comp(L)) in Γ, including L, is
annotated with i. If there is no such decision literal then its level is zero. A
ground clause D is of level i with respect to a problem state (Γ;N ;U ;β; k;D)
if i is the maximal level of a literal in D. the level of the empty clause ⊥ is 0.
Recall D is a non-empty closure or ⊤ or ⊥. Similarly, a trail Γ is of level i if the
maximal literal in Γ is of level i.

A literal L is undefined in Γ if neither L nor comp(L) occur in Γ. We omit
annotations to trail literals if they play no role in the respective context. Initially,

3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT209

the state for a first-order clause set N is (ϵ;N ; ∅;β; 0;⊤).

Example 3.16.5 (Exhaustive Propagation). Consider the clause set

N = {P (a), ¬P (x) ∨ P (g(x))}.

Then even with respect to a ground trail, there are infinitely many propagations
pssible:

[P (a)P (a)·{}, P (g(a))¬P (x)∨P (g(x))·{x7→a}, P (g(g(a)))¬P (x)∨P (g(x))·{x7→g(a)}, . . .]

Now consider a clause set

N ′ = {P (a), ¬P (x) ∨ P (g(x)), Q ∨ ¬R, Q ∨R, ¬Q ∨R, ¬Q ∨ ¬R}

then exhaustive propagation will prevent the detection of unsatisfiability of N ′.
Even if we restrict the trail to ground literals smaller β, there will be exponen-
tially many propagations possible, see Example 3.16.23. Therefore, for first-order
logic it is essential to provide calculi without exhaustive propagation.

The rules for conflict search are:

Propagate (Γ;N ;U ;β; k;⊤) ⇒SCL (Γ, Lσ(C0∨L)δ·σ;N ;U ;β; k;⊤)
provided C ∨ L ∈ (N ∪ U), C = C0 ∨ C1, C1σ = Lσ ∨ · · · ∨ Lσ, C0σ does
not contain Lσ, δ is the mgu of the literals in C1 and L, (C ∨ L)σ is ground,
(C ∨ L)σ ≺β {β}, C0σ is false under Γ, and Lσ is undefined in Γ

The rule Propagate applies exhaustive factoring to the propagated literal
with respect to the grounding substitution σ and annotates the factored clause
to the propagation literal on the trail.

Decide (Γ;N ;U ;β; k;⊤) ⇒SCL (Γ, Lσk+1;N ;U ;β; k + 1;⊤)
provided L ∈ C for a C ∈ (N ∪ U), Lσ is a ground literal undefined in Γ, and
Lσ ≺β β

Conflict (Γ;N ;U ;β; k;⊤) ⇒SCL (Γ;N ;U ;β; k;D · σ)
provided D ∈ (N ∪ U), Dσ false in Γ for a grounding substitution σ

These rules construct a (partial) model via the trail Γ for N ∪ U until a
conflict, i.e., a false clause with respect to Γ is found or all ground atoms smaller
β are defined in M and M |= grd(N)≺β . The above rules always terminate,
because there are only finitely many ground literals K with K ≺β β. Choosing
an appropriate β is sufficient for completeness for certain first-order fragments,
e.g., the BS fragment. In particular, for any fragment with the finite model
property, a decision procedure can be achieved with SCL for appropriate β. In
general, the rule Grow [?] increasing β is needed for full first-order completeness.
In the special case of a unit clause L, the rule Propagate actually annotates the

210 CHAPTER 3. FIRST-ORDER LOGIC

literal L with a closure of itself. So the propagated literals on the trail are
annotated with the respective propagating clause and the decision literals with
the respective level. If a conflict is found, it is resolved by the rules below. Before
any Resolve step, we assume that the respective clauses are renamed such that
they do not share any variables and that the grounding substitutions of closures
are adjusted accordingly.

Skip (Γ, L;N ;U ;β; k;D · σ) ⇒SCL (Γ;N ;U ;β; k − i;D · σ)
provided comp(L) does not occur in Dσ, if L is a decision literal then i = 1,
otherwise i = 0

Factorize (Γ;N ;U ;β; k; (D ∨ L ∨ L′) · σ) ⇒SCL (Γ;N ;U ;β; k; (D ∨ L)η · σ)
provided Lσ = L′σ, η = mgu(L,L′)

Resolve (Γ, Lδ(C∨L)·δ;N ;U ;β; k; (D ∨ L′) · σ)
⇒SCL (Γ, Lδ(C∨L)·δ;N ;U ;β; k; (D ∨ C)η · σδ)

provided Lδ = comp(L′σ), η = mgu(L, comp(L′))

Backtrack (Γ0,K,Γ1, comp(Lσ)k;N ;U ;β; k; (D ∨ L) · σ)
⇒SCL (Γ0;N ;U ∪ {D ∨ L};β; j;⊤)

provided Dσ is of level i′ < k, and Γ0,K is the minimal trail subsequence such
that there is a grounding substitution τ with (D ∨L)τ is false in Γ0,K but not
in Γ0, and Γ0 is of level j

Please note the corner case of rule Backtrack where τ = σ and i′ = j. The
clause D ∨ L added by the rule Backtrack to U is called a learned clause. The
empty clause ⊥ can only be generated by rule Resolve or be already present in
N , hence, as usual for CDCL style calculi, the generation of ⊥ together with the
clauses in N ∪ U represent a resolution refutation. The calculus offers freedom
with respect to factorization. Literals in the conflict clause can, but do not
have to be factorized. In particular, the Factorize rule may remove duplicate
literals. The rule Resolve does not remove the literal resolved upon from the
trail. Actually, Resolve is applied as long as the rightmost propagated trail
literal occurs in the conflict clause. This literal is eventually removed by rule
Skip from the trail.

Example 3.16.6. consider the clause set presented in [?]:

N = {D = Q ∨R(a, y) ∨R(x, b), C = Q ∨ S(x, y) ∨ P (x) ∨ P (y) ∨ ¬R(x, y)}

and a problem state:
([¬P (a)1,¬P (b)2,¬S(a, b)3,¬Q4,¬R(a, b)C·{x 7→a,y 7→b}];N ; ∅;¬R(b, b); 4;⊤)

derived by SCL. We assume ¬R(b, b) to the largest literal among all ground
instances of P , S, Q, R literals over the constants a, b. The rule Conflict is
applicable and yields the conflict state

(¬P (a)1,¬P (b)2,¬S(a, b)3,¬Q4, R(a, b)C·{x 7→a,y 7→b};N ; ∅;¬R(b, b); 4;D · {x 7→ a, y 7→ b})

3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT211

from which we can either learn the clause
C1 = Q ∨ S(x, b) ∨ P (x) ∨ P (b) ∨ S(a, y) ∨ P (a) ∨ P (y)

or the clause
C2 = Q ∨ S(a, b) ∨ P (a) ∨ P (b)

depending on whether we first resolve or factorize. Note that C2 does not sub-
sume C1. Both clauses are non-redundant. In order to learn C1 we need to
resolve twice with R(a, b)C·{x 7→a,y 7→b}.

Example 3.16.7. Consider the clause set

N =

{
D = Q ∨R(a, y) ∨R(x, b)
C = Q ∨ S(x, y) ∨ P (x) ∨ P (y) ∨ ¬R(x, y)

}
and a problem state:

([¬P (a)1,¬P (b)2,¬S(a, b)3,¬Q4,¬R(a, b)C·{x 7→a,y 7→b}];N ; ∅;¬R(b, b); 4;⊤)

derived by SCL. We assume ¬R(b, b) to the largest literal among all ground
instances of P , S, Q, R literals over the constants a, b. The rule Conflict is
applicable and yields the conflict state

(¬P (a)1,¬P (b)2,¬S(a, b)3,¬Q4, R(a, b)C·{x 7→a,y 7→b};

N ; ∅;¬R(b, b); 4;D · {x 7→ a, y 7→ b})

from which we can either learn the clause

C1 = Q ∨ S(x, b) ∨ P (x) ∨ P (b) ∨ S(a, y) ∨ P (a) ∨ P (y)

or the clause
C2 = Q ∨ S(a, b) ∨ P (a) ∨ P (b)

depending on whether we first resolve or factorize. Note that C2 does not sub-
sume C1. Both clauses are non-redundant. In order to learn C1 we need to
resolve twice with R(a, b)C·{x 7→a,y 7→b}.

The first property we prove about SCL is soundness. We prove it via the
notion of a sound state.

Definition 3.16.8 (Sound States). A state (Γ;N ;U ;β; k;D) is sound if the
following conditions hold:

1. Γ is a consistent sequence of annotated ground literals, i.e. for a ground
literal L it cannot be that L ∈ Γ and ¬L ∈ Γ

2. for each decomposition Γ = Γ1, Lσ
C∨L·σ,Γ2 we have that Cσ is false under

Γ1 and Lσ is undefined under Γ1, N ∪ U |= C ∨ L,

3. for each decomposition Γ = Γ1, L
k,Γ2 we have that L is undefined in Γ1,

4. N |= U ,

212 CHAPTER 3. FIRST-ORDER LOGIC

5. if D = C · σ then Cσ is false under Γ and N |= C. In particular,
grd≺ββ(N) |= Cσ,

6. for any L ∈ Γ we have L ≺β β and there is a C ∈ N ∪U such that L ∈ C.

To show soundness of SCL, we first show soundness of the initial state.
Then, we show that all SCL rule applications preserve soundness, which shows
soundness of the overall calculus starting from the initial state.

Lemma 3.16.9 (Soundness of the initial state). The initial state (ϵ;N ; ∅;β; 0;⊤)
is sound.

Proof. Criteria 1–3 and 6 are trivially satisfied by Γ = ϵ. Furthermore, N |= ∅,
fulfilling criterion 4. Lastly, criterion 5 is trivially fulfilled for D = ⊤.

Theorem 3.16.10 (Soundness of SCL). All SCL rules preserve soundness, i.e.
they map a sound state onto a sound state.

Proof. As the hypothesis, assume that a state (Γ;N ;U ;β; k;D) is sound. We
show that any application of a rule results again in a sound state.

Decide. Assume Decide is applicable to (Γ;N ;U ;β; k;D), yielding a resulting
state (Γ, Lσk+1;N ;U ;β; k + 1;D). Then there is a L ∈ C for C ∈ N ∪U , Lσ is
ground and undefined in Γ, and Lσ ≺β β. Also, there can be no active conflict,
i.e. D = ⊤.

1, 3 By the precondition, Lσ is undefined in Γ (3). Hence, adding Lσ does not
make Γ inconsistent (1).

2, 4 Trivially fulfilled by hypothesis.

5 Since D = ⊤, the rule is trivially satisfied.

6 For all literals L′σ′ ∈ Γ, this holds by hypothesis. For Lσ this follows
directly from the preconditions of the rule.

Propagate. Assume Propagate is applicable to (Γ;N ;U ;β; k;D), yielding a re-
sulting state (Γ, Lσ(C0∨L)δ·σ;N ;U ;β; k;D). Then, there is a C ∨ L ∈ (N ∪ U)
such that C = C0 ∨C1, C1σ = Lσ ∨ · · · ∨Lσ, C0σ does not contain Lσ, δ is the
mgu of the literals in C1 and L, (C ∨ L)σ is ground, (C ∨ L)σ ≺β {β}, C0σ is
false under Γ, and Lσ is undefined in Γ. Also, there can be no active conflict,
i.e. D = ⊤.

1, 3 By the precondition, Lσ is undefined in Γ (3). Hence, adding Lσ(C0∨L)δ·σ

does not make Γ inconsistent (1).

2 Consider any decomposition Γ, Lσ(C0∨L)δ·σ = Γ1, L
′σ′C′

0∨L
′·σ′

,Γ2. In
the case of L′σ ̸= Lσ, we can apply the hypothesis for the state
(Γ;N ;U ;β; k;D). Hence, only the case Γ1 = Γ, L′σ′ = Lσ, and C ′

0σ = C0σ
is left to prove.

3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT213

First, note that C0σ is false under Γ1 = Γ by the preconditions. Also, Lσ
must be undefined in Γ by the preconditions. Lastly, it needs to be shown
that N ∪ U |= (C0 ∨ L)δ. Clearly, since C ∨ L ∈ (N ∪ U), it holds that
N ∪ U |= C ∨ L. Since C = C0 ∨ C1 and C1σ = Lσ ∨ · · · ∨ Lσ it follows
from the soundness of first-order factorization that C |= (C0 ∨ L) and by
this N ∪ U |= C0 ∨ L.

4 Follows trivially from the induction hypothesis.

5 Since D = ⊤, this rule is trivially satisfied.

6 For all literals L′σ′ ∈ Γ, this holds by hypothesis. For Lσ, consider the
precondition that (C ∨ L)σ ≺β {β}. By the definition of the multiset
extension of ≺β , it follows that Lσ ≺β β must hold as well.

Conflict. Assume Conflict is applicable to (Γ;N ;U ;β; k;D), yielding a resulting
state (Γ;N ;U ;β; k;C · σ). Then, there is a C ∈ (N ∪ U) such that Cσ is false
in Γ for a grounding σ.

1-3 Trivially fulfilled by hypothesis, as the trail Γ is not modified.

4 Follows trivially from the induction hypothesis, as neither N nor U are
modified.

5 It holds that D = C ·σ. By the preconditions of Conflict, Cσ must be false
under Γ. Furthermore, since C ∈ (N ∪U) it holds that N ∪U |= C. Since
N |= U by soundness (4), is also holds that N |= C. Lastly, it remains
to show that grd≺ββ(N) |= Cσ. By soundness (6), we know that for all
literals Lµ ∈ Γ it holds that Lµ ≺β β. Since Cσ is false in Γ, it must hold
that all literals in Cσ are also ≺β β. Combined with N |= C, this yields

that grd≺ββ(N) |= Cσ.

6 Fulfilled by the hypothesis, since no literal is added to Γ.

Skip. Assume Skip is applicable to (Γ = Γ′, L;N ;U ;β; k;D · σ), yielding a re-
sulting state (Γ′;N ;U ;β; k− i;D · σ). By the preconditions of skip, it must hold
that comp(L) does not occur in Dσ, and if L is a decision literal then i = 1 else
i = 0.

1-3, 6 Directly fulfilled by hypothesis, as all prefixes of Γ still fulfil all properties.
In particular, this holds for the prefix Γ′ of Γ.

4 Follows trivially from the induction hypothesis, as U is not modified.

5 After the application of Skip, D · σ is the current conflict. Since D is not
modified, N |= D and grd≺ββ(N) |= Dσ by hypothesis. It is left to show
that Dσ is false under the resulting Γ′, given the assumption that Dσ
is false under Γ. However, since comp(L) ̸∈ Dσ, this is trivially fulfilled,
as the removal of comp(L) from the trail Γ cannot make Dσ undefined.
Hence, Dσ must be false under Γ′ as well.

214 CHAPTER 3. FIRST-ORDER LOGIC

Factorize. Assume Factorize is applicable to (Γ;N ;U ;β; k; (D ∨ L ∨ L′) · σ),
yielding a resulting state (Γ;N ;U ;β; k; (D ∨ L)η · σ). Then, Lσ = L′σ and
η = mgu(L,L′).

1-3, 6 Trivially fulfilled by hypothesis, as the trail Γ is not modified.

4 Follows trivially from the induction hypothesis, as U is not modified.

5 After the application of Factorize, (D ∨ L)η · σ is the current conflict. By
the hypothesisN |= (D∨L∨L′). From the preconditions of Factorize, Lσ =
L′σ and η = mgu(L,L′). Thus, (D∨L∨L′)η is an instance of (D∨L∨L′)
and N |= (D∨L∨L′)η. Since Lη = L′η, (D∨L∨L′)η |= (D∨L′)η. Thus,
N |= (D∨L)η. By the preconditions, grd≺ββ(N) |= grd≺ββ((L∨L∨L′)σ).
Hence, (D∨L∨L′)σ ≺β {β}. Thus, (D∨L)ησ = (D∨L)σ ≺β {β}. From
this, it follows that grd≺ββ(N) |= grd≺ββ((D ∨ L)σ).
Furthermore, (D ∨ L)ησ is false under Γ, since (D ∨ L)ησ = (D ∨ L)σ by
the definition of an mgu, and (D ∨ L ∨ L′)σ is already false under Γ.

Resolve. Assume the rule Resolve is applicable to an SCL state of the
shape (Γ = Γ′, Lδ(C∨L)·δ;N ;U ;β; k; (D ∨ L′) · σ), yielding a resulting state
(Γ;N ;U ;β; k; (D ∨ C)η · σδ). By the preconditions of Resolve, it holds that
Lδ = comp(L′σ) and η = mgu(L, comp(L′)).

1-3, 6 Trivially fulfilled by hypothesis, as the trail Γ is not modified.

4 Follows trivially from the induction hypothesis, as U is not modified.

5 After the application of Resolve, (D ∨ C)η · σδ is the current conflict.

By the hypothesis, (D ∨ L′)σ is false under Γ. In particular, Dσ is false
under Γ. By soundness (2), we know that Cδ must be false under Γ as
well. Hence, (D ∨ L)ησδ is false under Γ.

Furthermore, by the hypothesis, N |= (D ∨ L′). Since (D ∨ L′)η is an in-
stance of (D∨L′), it holds that N |= (D∨L′)η. Furthermore, by soundness
(2) we know that N ∪U |= (C ∨L) and by soundness (4) this implies that
N |= (C ∨ L). With similar argumentation, also N |= (C ∨ L)η. By the
soundness of resolution, this implies N |= (D ∨ C)η.
Lastly, since (D∨L′)σ is false in Γ, all occuring literals in {(D∨L′)σ} ≺β
{β}. With similar argumentation, {(C∨L)δ} ≺β {β}. Hence, in particular,

(D ∨ C)ησδ ≺β {β} and, thus, grd≺ββ(N) |= grd≺ββ((D ∨ C)ησδ).

Backtrack. Assume the rule Backtrack is applicable to a SCL state of shape (Γ =
Γ0,K,Γ1;N ;U ;β; k; (D ∨ L) · σ), yielding the resulting SCL state (Γ0,K;N ;U∪
{D ∨ L};β; k′;⊤).

1-3, 6 Directly fulfilled by hypothesis, as all prefixes of Γ still fulfil all properties.
In particular, this holds for the prefix Γ0,K of Γ.

3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT215

4 By the hypothesis, we know that N |= U . By soundness (5) we know that
N |= (D ∨ L). Overall, N |= U ∪ {D ∨ L}

5 Since after an application of Backtrack the conflict is resolved, i.e. D = ⊤,
the rules are trivially satisfied.

Corollary 3.16.11. The rules of SCL are sound, hence SCL starting with an
initial state is sound.

Proof. Follows by induction over the length of the run. The base case is handled
by Lemma 3.16.9, the induction step is contained in Theorem 3.16.10.

Next we introduce reasonable and regular runs. As an overall goal, we will
show that regular runs always generate non-redundant clauses but do not require
exhaustive propagation.

Definition 3.16.12 (Reasonable Runs). A sequence of SCL rule applications
is called a reasonable run if the rule Decide does not enable an immediate
application of rule Conflict.

Definition 3.16.13 (Regular Runs). A sequence of SCL rule applications is
called a regular run if it is a reasonable run and the rule Conflict has precedence
over all other rules.

Theorem 3.16.14 (Correct Termination). If in a regular run no rules are
applicable to a state (Γ;N ;U ;β; k;D) then either D = ⊥ and N is unsatisfiable
or D = ⊤ and grd(N)≺ββ is satisfiable and Γ |= grd(N)≺ββ .

Proof. Consider a state (Γ;N ;U ;β; k;D). Then, D can have one of the following
shapes:

(Case D = ⊤) If D = ⊤, then there is no active conflict. Assume there are
no undefined ground literals L ≺β β for L ∈ C, C ∈ N ∪ U in Γ. Now, either

Γ |= grd≺ββ(N) and thus Γ is already a partial model for N w.r.t. ≺β and β.

Otherwise, if Γ ̸|= grd≺ββ(N) but all literals are defined, there must be a false
clause C ∈ grd≺ββ(N) which can be chosen as a Conflict instance.

If there is at least one undefined ground literal L ≺β β occuring in N∪U , one
of the trail building rules Propagate, Decide, or Conflict are applicable. Decide
on the undefined ground literal L is, by the preconditions of the rule, in such a
case always possible. The application of Decide can, however, be restricted by
reasonability or regularity.

If Decide on L is not applicable by reasonability, then Γ, Lk+1 must lead
to a direct application of Conflict. Thus, there is a clause D ∈ N ∪ U such
that Dσ is false under Γ, Lk+1. If Dσ is already false under Γ, then Conflict is
applicable. Otherwise, D has the shape D0 ∨D1 where D0 is false under Γ, and
D1σ = comp(L)∨ · · · ∨ comp(L). Since D0 is false under Γ, also D0 ≺β {β} and

216 CHAPTER 3. FIRST-ORDER LOGIC

since L ≺β β it holds that D0 ∨ D1 ≺β {β} by the definition of our multiset
extension. Hence, Propagate can be applied.

If Decide is not applicable by regularity, Conflict must be applicable, since
regularity only priorizes the Conflict rule application.

(Case D = C · σ) If D = C · σ, then there is an active conflict which needs to
be resolved. In this case, one of the rules Resolve, Skip, Factorize or Backtrack
are applicable.

First, consider the case of Γ = ε. By soundness, Cσ must be false under
Γ. However, the only false clause under ε is ⊥. In this case, D = ⊥ and by
soundness, N |= ⊥. Hence, N is unsatisfiable. In the other case, there is at least
one literal on the trail. We split Γ = Γ′, L and distinguish the shape of L:

• Consider the case that L was propagated, i.e. is of shape LC·δ for a clause
C ∈ N ∪ U . Then, either Resolve or Skip are applicable. In the case that
comp(L) occurs in Cσ, Resolve is applicable. If comp(L) ̸∈ Cσ, Skip is
applicable.

• Consider the case that L is a decision literal, i.e. is of shape Li for a
numerical level i. Then, one of the rules Skip, Backtrack or Factorize are
applicable.

If comp(L) does not occur in Cσ, then Skip can be applied. Backtrack can
be applied in all other cases if C = (C ′ ∨ comp(L)), where C ′ is of level
i′ < k. Note that for Backtrack there must be a level j that is backtracked
to. This level j always exists if all other preconditions are met. Hence, if
Skip is not applicable, C is of the shape C ′ ∨ comp(L). If C ′ is of level k,
then Factorize can be applied instead, as C ′ must contain another instance
of comp(L). Otherwise, C ′ is of level i′ < k and Backtrack can be applied.

For a state (Γ;N ;U ;β; k;D) where D ̸∈ {⊤,⊥}, one of the rules Resolve,
Skip, Factorize or Backtrack is applicable. If the top level literal is a propagated
literal then either Resolve or Skip are applicable. If the top level literal is a
decision then one of the rules Skip, Backtrack, or Factorize is applicable. In the
case D = ⊤ and Decide is not applicable by regularity, Propagate can always
be applied instead. If D = ⊤ and all Propagate, Decide, and Conflict are not
applicable it means that there are no undefined ground literals L ≺β β in Γ, so
Γ |= grd(N)≺ββ .

Lemma 3.16.15 (Resolve in regular runs). Consider the derivation of a conflict
state (Γ, L;N ;U ;β; k;⊤)⇒Conflict (Γ, L;N ;U ;β; k;D). In a regular run, during
conflict resolution L is not a decision literal and at least the literal L is resolved.

Proof. In a reasonable run, if the rule Decide has produced the SCL state
(Γ, L;N ;U ;β; k;⊤), the rule Conflict is not immediately applicable, so L
must be a propagated literal. In case the rule Backtrack produced the state

3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT217

(Γ, L;N ;U ;β; k;⊤) there is the sequence of rule applications

(Γ, L, L′,Γ1,K
k+1,Γ2, comp(Lσ)k

′
;N ;U ′;β; k′; (D ∨ L′′) · σ)

⇒Backtrack
SCL (Γ, L;N ;U ′ ∪ (D ∨ L′′);β; k;⊤)

Then, by the definition of Backtrack, the newly learned clause (D ∨L′′) cannot
be false with respect to Γ, L. Thus, Conflict is not applicable to (D ∨ L′′). In
summary, L must be a propagated literal.

Backtrack is not directly applicable to (Γ, L;N ;U ;β; k;D), as it requires L
to be a decision literal. Furthermore, L must occur in the conflict clause D.
Otherwise, Conflict could have been applied earlier to (Γ;N ;U ;β; k;⊤), con-
tradicting regularity. Hence, Skip is not applicable to our state. Overall, only
Factorize and Resolve can possibly be applied to our state. After an application
of Factorize, the two invariants still hold: First, the trail is not modified. Sec-
ond, L must still occur in the conflict clause D, as Factorize cannot remove all
instances of L from D. Hence, Factorize cannot enable any of the rules Skip or
Backtrack. Following from that, at least one application of Resolve must take
place in conflict resolution.

Definition 3.16.16 (State Induced Ordering). Let (L1, L2, . . . , Ln;N ;U ;β; k;D)
be a sound state of SCL. The trail induces a total well-founded strict order on
the defined literals by

L1 ≺Γ comp(L1) ≺Γ L2 ≺Γ comp(L2) ≺Γ · · · ≺Γ Ln ≺Γ comp(Ln).
We extend ≺Γ to a strict total order on all literals where all undefined liter-
als are larger than comp(Ln). We also extend ≺Γ to a strict total order on
ground clauses by multiset extension and also on multisets of ground clauses
and overload ≺Γ for all these cases. With ⪯Γ we denote the reflexive closure of
≺Γ.

Theorem 3.16.17 (Learned Clauses in Regular Runs). Let (Γ;N ;U ;β; k;C0 ·
σ0) be the state resulting from the application of Conflict in a regular run and
let C be the clause learned at the end of the conflict resolution, then C is not
redundant with respect to N ∪ U and ≺Γ.

Proof. Consider the following fragment of a derivation learning a clause:

⇒Conflict
SCL (Γ;N ;U ;β; k;C0 · σ0)⇒{Skip, Fact., Res.}∗

SCL (Γ′;N ;U ;β; k;C · σ)⇒Backtrack
SCL .

Consider the following fragment of a derivation learning a clause:

⇒Conflict
SCL (Γ;N ;U ;β; k;C0 · σ0)

⇒{Skip, Fact., Res.}∗

SCL (Γ′;N ;U ;β; k;C · σ)
⇒Backtrack

SCL

By soundness N ∪ U |= C and Cσ is false under both Γ and Γ′. We prove
that Cσ is non-redundant to N ∪ U with respect to ≺Γ.

Assume there is an S ⊆ grd(N ∪U)⪯ΓCσ such that S |= Cσ. There must be
a clause D ∈ S false under Γ, since all clauses in S have a defined truth value

218 CHAPTER 3. FIRST-ORDER LOGIC

(as all undefined literals are greater in ≺Γ than all defined literals) and if Γ |= S
then Γ |= Cσ by transitivity of entailment, a contradiction.

By regularity, Γ must be of the shape Γ = Γ′′, LδC∨L·δ, since no application
of Decide can lead to an application of the rule Conflict. Thus, the last applied
rule must have been Propagate. Furthermore, by Lemma 3.16.15, Resolve must
have resolved at least the rightmost literal Lδ from Γ. Thus, Lδ ̸∈ Cσ and
comp(Lδ) ̸∈ Cσ.

Since D ≺Γ Cσ, neither Lδ nor comp(Lδ) may occur in D. However, this
is a contradiction, since D is then already false under Γ′′ and, thus, must have
been chosen as a Conflict instance earlier in a regular run.

C

Of course, in a regular run, the ordering of foreground literals on the
trail will change, i.e., the ordering of Definition 3.16.16 will change
as well. Thus the non-redundancy property of Lemma 3.16.17 reflects

the situation at the time of creation of the learned clause. A non-redundancy
property holding for an overall run must be invariant against changes on the
ordering. However, the ordering of Definition 3.16.16 also entails a fixed subset
ordering≺⊆ that is invariant against changes on the overall ordering. This means
that our dynamic ordering entails non-redundancy criteria based on subset re-
lations including forward subsumption. From an implementation perspective,
this means that learned clauses need not to be tested for forward redundancy.
Current resolution or superposition based provers spent a reasonable portion of
their time in testing forward redundancy of newly generated clauses. In addi-
tion, also tests for backward reduction can be restricted knowing that learned
clauses are not redundant.

Theorem 3.16.18 (BS Non-Redundancy is NEXPTIME-Complete). Deciding
non-redundancy of a BS clause C with respect to a finite BS clause set N⪯C is
NEXPTIME-Complete.

Proof. We only show hardness, because containment of the problem in NEXP-
TIME is obvious. To this end, let N = {C1, . . . , Cn} be an arbitrary, finite BS
clause set. We consider an LPO ordering ≺LPO. Next, we add a fresh predicate
P of arity zero, where P is ≺LPO larger than any clause in N . Now, in the finite
BS clause set N ∪ {P} the clause P is redundant iff N is unsatisfiable.

Theorem 3.16.19 (Termination). Any regular run of ⇒SCL terminates.

Proof. Any infinite run learns infinitely many clauses. Firstly, for a regular run,
by Theorem 3.16.17, all learned clauses are non-redundant. By Remark 3.16.4,
those clauses are also non-redundant under the fixed subset ordering ≺⊆, which
is well-founded. Due to the restriction of all clauses to be smaller than {β}, the
overall number of non-redundant ground clauses is finite. So there is no infinite
regular run.

Theorem 3.16.20 (SCL Refutational Completeness). If N is unsatisfiable,
such that some finite N ′ ⊆ grd(N) is unsatisfiable and β is ≺β larger than all
literals in N ′ then any regular run from (ϵ;N ; ∅;β; 0;⊤) of SCL derives ⊥.

3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT219

Proof. By Theorem 3.16.19 and Theorem 3.16.14.

Obviously, given some unsatisfiable clause set N there is no way to efiiciently
compute some β such that ground(N)≺β is unsatisfiable. Therefore, in an imple-
mentation, the below rule Grow is needed to eventually provide a semi-decision
procedure.

Grow (Γ;N ;U ;β; k;⊤) ⇒SCL (ϵ;N ;U ;β′; 0;⊤)
provided Γ |= grd(N)≺β and β ≺β β′

Theorem 3.16.21 (SCL decides the BS fragment). SCL restricted to regular
runs decides satisfiability of a BS clause set if β is set appropriately.

Proof. Let B be the set of constants in the BS clause set N . Then define ≺β
and β such that L ≺β β for all L ∈ grd≺ββ(N). Following the proof of Theo-
rem 3.16.19, any SCL regular run will terminate on a BS clause set.

Example 3.16.22 (Comparing Proof Length Depending on Unit Clause Propa-
gation). Proofs generated without full propagation can be exponentially shorter
than proofs generated by exhaustive propagation. Consider the simple BS clause
set over constants Ω = {a, b}

N = {R(x1, . . . , xn, a, b), P ∨Q,P ∨ ¬Q,¬P ∨Q,¬P ∨ ¬Q}

A run without exhaustive propagation can ignore generating the 2n different
ground instances of R(x1, . . . , xn, a, b) starting with initial set B = {a, b}. In-
stead it refutes the propositional part of N in the usual CDCL style by starting
with a decision on P or Q. For the example it is obvious that the instances of
R(x1, . . . , xn, a, b) can be ignored, but in general it is not.

Consider another example, taken from [?], where exhaustive propagation
leads to exponentially longer proofs compared to the shortest resolution proof.

Example 3.16.23 (Comparing Proof Length Depending on Clause Propaga-
tion). Let i be a positive integer and consider the clause set N i with one predi-
cate P of arity i consisting of the following clauses, where we write x̄, 0̄ and 1̄ to
denote sequences of the appropriate length of variables and constants to meet
the arity of P :

P (0̄) ¬P (1̄)

and i clauses of the form ¬P (x̄, 0, 1̄) ∨ P (x̄, 1, 0̄)
where the length of 1̄ varies between 0 and i− 1. The example encodes an i-bit
counter. An SCL run with exhaustive propagation on this clause set finds a
conflict after O(2i) propagations without any application of Decide.

For the instance i = 4 we get the clauses of N4:

220 CHAPTER 3. FIRST-ORDER LOGIC

N4 = {

1 : P (0, 0, 0, 0)
2 : ¬P (x1, x2, x3, 0) ∨ P (x1, x2, x3, 1)
3 : ¬P (x1, x2, 0, 1) ∨ P (x1, x2, 1, 0)
4 : ¬P (x1, 0, 1, 1) ∨ P (x1, 1, 0, 0)
5 : ¬P (0, 1, 1, 1) ∨ P (1, 0, 0, 0)
6 : ¬P (1, 1, 1, 1)

}

For this clause set an SCL all unit clauses from P (0, 0, 0, 0) to P (1, 1, 1, 1)
via 24 applications of Propagate, then finds a conflict with clause 6 and then
uses 24 times Resolve to end up in ⊥.

Instead a short resolution refutation can be obtained by

2.2 Res 3.1 7 : ¬P (x1, x2, 0, 0) ∨ P (x1, x2, 1, 0)
7.2 Res 2.1 8 : ¬P (x1, x2, 0, 0) ∨ P (x1, x2, 1, 1)
8.2 Res 4.1 9 : ¬P (x1, 0, 0, 0) ∨ P (x1, 1, 0, 0)
9.2 Res 8.1 10 : ¬P (x1, 0, 0, 0) ∨ P (x1, 1, 1, 1)
10.2 Res 5.1 11 : ¬P (0, 0, 0, 0) ∨ P (1, 0, 0, 0)
11.2 Res 10.1 12 : ¬P (0, 0, 0, 0) ∨ P (1, 1, 1, 1)
12.1 Res 6.1 13 : ⊥

In general, O(2i) many resolution steps are sufficient to refute N i. This
derivation can be simulated by SCL if exhaustive propagation is not used. For
example, the first resolution step between clauses 2.2 and 3.1 can be simulated
by first deciding P (1, 1, 0, 0) and ¬P (1, 1, 1, 0) yielding the state

([P (1, 1, 0, 0)1,¬P (1, 1, 1, 0)2];N ; ∅; {0, 1}; 2;⊤)

now we can propagate using ¬P (1, 1, 1, 0)2 with clause 3

([P (1, 1, 0, 0)1,¬P (1, 1, 1, 0)2,¬P (1, 1, 0, 1)¬P (x1,x2,0,1)∨P (x1,x2,1,0)·{x1 7→1,x2 7→1}];N ; ∅; {0, 1}; 2;⊤)

and then get a conflict with clause 2 by closure (¬P (x1, x2, x3, 0) ∨
P (x1, x2, x3, 1)) · {x1 7→ 1, x2 7→ 1, x3 7→ 0}. Next we apply Conflict and Resolve
to the rightmost propagated literal and get

([P (1, 1, 0, 0)1,¬P (1, 1, 1, 0)2];N ; ∅; {0, 1}; 2; (¬P (x1, x2, 0, 0)∨P (x1, x2, 1, 0))·{x1 7→ 1, x2 7→ 1}).

Finally Backtrack is applicable resulting in

([P (1, 1, 0, 0)1, P (1, 1, 1, 0)(¬P (x1,x2,0,0)∨P (x1,x2,1,0))·{x1 7→1,x2 7→1}];N ; {¬P (x1, x2, 0, 0)∨P (x1, x2, 1, 0)}; {0, 1}; 1;⊤).

However, to continue with the proof we need also need a Restart rule, which
is anyway needed for completeness to get out of stuck states.

