6.2.5 Lemma (Simplex State Invariants)

The following invariants hold for any state $(E_i; B_i; \beta_i; S_i; s_i)$ derived by \Rightarrow_{SIMP} on a start state $(E_0; B_0; \beta_0; \emptyset; \top)$:

- (i) for every dependent variable there is exactly one equation in E defining the variable
- (ii) dependent variables do not occur on the right hand side of an equation
- (iii) LRA(β) $\models E_i$
- (iv) for all independant variables x either $\beta_i(x) = 0$ or $\beta_i(x) = c$ for some bound $x \circ c \in S_i$
- (v) for all assignemnts α it holds LRA(α) $\models E_0$ iff LRA(α) $\models E_i$

6.2.6 Lemma (Simplex Run Invariants)

For any run of \Rightarrow_{SIMP} from start state

- $(E_0; B_0; \beta_0; \emptyset; \top) \Rightarrow_{\mathsf{SIMP}} (E_1; B_1; \beta_1; S_1; s_1) \Rightarrow_{\mathsf{SIMP}} \ldots$
 - (i) the set $\{\beta_o, \beta_1, \ldots\}$ is finite
 - (ii) if the sets of dependent and independent variables for two equational systems E_i , E_j coincide, then $E_i = E_j$
 - (iii) the set $\{E_o, E_1, \ldots\}$ is finite
- (iv) let S_i not contain contradictory bounds, then $(E_i; B_i; \beta_i; S_i; s_i) \Rightarrow_{SIMP}^{FIV,*}$ is finite

6.2.7 Corollary (Infinite Runs Contain a Cycle)

Let $(E_0; B_0; \beta_0; \emptyset; \top) \Rightarrow_{SIMP} (E_1; B_1; \beta_1; S_1; s_1) \Rightarrow_{SIMP} \dots$ be an infinite run. Then there are two states $(E_i; B_i; \beta_i; S_i; s_i)$, $(E_k; B_k; \beta_k; S_k; s_k)$ such that $i \neq k$ and $(E_i; B_i; \beta_i; S_i; s_i) = (E_k; B_k; \beta_k; S_k; s_k)$.

6.2.8 Definition (Reasonable Strategy)

A *reasonable* strategy prefers FailBounds over EstablishBounds and the FixDepVar rules select minimal variables x, y in the ordering \prec .

6.2.9 Theorem (Simplex Soundness, Completeness & Termination)

Given a reasonable strategy and initial set N of inequations and its separation into E and B:

- (i) $\Rightarrow_{\text{SIMP}}$ terminates on (*E*; *B*; β_0 ; \emptyset ; \top),
- (ii) if $(E; B; \beta_0; \emptyset; \top) \Rightarrow^*_{SIMP} (E'; B'; \beta; S; \bot)$ then *N* has no solution,
- (iii) if $(E; B; \beta_0; \emptyset; \top) \Rightarrow^*_{SIMP} (E'; \emptyset; \beta; B; \top)$ and $(E; \emptyset; \beta; B; \top)$ is a normal form, then LRA $(\beta) \models N$,
- (iv) all final states (E'; B'; β ; S; s) match either (ii) or (iii).

