UNIVERSITÄT DES SAARLANDES

FR 6.2 - Informatik
Christoph Weidenbach

Lecture "Automated Reasoning"
(Winter Term 2016/2017)
Midterm Examination

Name: \qquad

Student Number: \qquad
Some notes:

- Things to do at the beginning:

Put your student card and identity card (or passport) on the table.
Switch off mobile phones.
Whenever you use a new sheet of paper (including scratch paper), first write your name and student number on it.

- Things to do at the end:

Mark every problem that you have solved in the table below.
Stay at your seat and wait until a supervisor staples and takes your examination text.
Note: Sheets that are accidentally taken out of the lecture room are invalid.

Problem	1	2 a	2 b	2 c	3	4	5	6 a	6 b	6 c	7	Σ
Answered?												
Points												

Refute the following clause set by superposition where you may apply the reduction rules Condensation, and Subsumption Resolution. Use the ordering $P_{4} \succ P_{3} \succ P_{2} \succ P_{1}$. You may also make use of a selection function.
$1 \quad P_{2} \vee P_{4}$
$2 \quad P_{1} \vee P_{4}$
$4 \quad P_{1} \vee \neg P_{3}$
$5 \quad P_{4} \vee \neg P_{3}$
$3 \quad \neg P_{2} \vee P_{1}$
$7 \quad \neg P_{1} \vee P_{3} \quad 8 \quad \neg P_{4} \vee P_{3}$
$6 \neg P_{3} \vee P_{2}$
$10 \quad \neg P_{2} \vee \neg P_{3} \quad 11 \quad \neg P_{4} \vee \neg P_{2} \vee P_{3}$

Problem 2 (Superposition Model Building)
Consider the below clause set with atom ordering $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1}$.

1	$P_{1} \vee P_{2} \vee P_{2}$	2	$\neg P_{1} \vee \neg P_{2}$	3	$\neg P_{2} \vee \neg P_{3}$
4	$P_{1} \vee P_{3}$	5	$P_{4} \vee P_{5} \vee P_{1}$	6	$\neg P_{4} \vee P_{1}$
7	$\neg P_{4} \vee P_{2}$	8	$\neg P_{5} \vee P_{2}$	9	$\neg P_{5} \vee \neg P_{3}$

(a) Compute $N_{\mathcal{I}}$.
(b) Determine the minimal false clause in $N_{\mathcal{I}}$. Perform the respective superposition inference on the clause. Add the derived clause to N resulting in N^{\prime} and compute $N_{\mathcal{I}}^{\prime}$.
(c) Determine the minimal false clause in $N_{\mathcal{I}}^{\prime}$. Perform the respective superposition inference on the clause. Add the derived clause to N^{\prime} resulting in $N^{\prime \prime}$ and compute $N_{\mathcal{I}}^{\prime \prime}$.

Check via CDCL whether the below clause set is satisfiable.

1	$P 11 \vee P 12$	2	$P 21 \vee P 22$	3	$P 31 \vee P 32$
4	$P 41 \vee P 42$	5	$\neg P 11 \vee P 42$	6	$\neg P 42 \vee P 11$
7	$\neg P 11 \vee \neg P 21$	8	$\neg P 11 \vee \neg P 31$	9	$\neg P 31 \vee \neg P 41$
10	$\neg P 12 \vee \neg P 22$	11	$\neg P 32 \vee \neg P 42$	12	$\neg P 12 \vee \neg P 32$

Problem 4 (CNF)
Transform the formula

$$
(P \vee((Q \leftrightarrow \top) \wedge \neg R)) \vee(P \leftrightarrow(Q \leftrightarrow \perp))
$$

into CNF using \Rightarrow ACNF .

Prove that the formula

$$
((\neg P \vee \neg R) \rightarrow Q) \rightarrow(\neg Q \rightarrow(P \wedge R))
$$

is valid using tableau. You may use a tree representation of the tableau.

Which of the following statements are true or false? Provide a proof or a counter example.

1. If $N_{\mathcal{I}} \models N$ then N is saturated up to redundancy.
2. If all clauses in N have at most one positive literal and the CDCL rule Propagate is not applicable to the state $(\epsilon ; N ; \emptyset ; 0 ; \top)$ then N is satisfiable.
3. If all clauses in N have at most one positive literal and there is no clause in N having only negative literals then $N_{\mathcal{I}} \models N$.

Consider a reasonable CDCL run

$$
(\epsilon ; N ; \emptyset ; 0 ; \top) \Rightarrow{ }_{\mathrm{CDCL}}^{*}\left(L_{1} \ldots L_{n} ; N ; \emptyset ; k ; D\right)
$$

where the last applied rule was Conflict and hence $D \notin\{\top, \perp\}$. Consider the atom ordering atom $\left(L_{1}\right) \prec \operatorname{atom}\left(L_{2}\right) \prec \ldots \prec \operatorname{atom}\left(L_{n}\right)$. Prove that any of the subsequent CDCL Resolve steps until backtracking is a Superposition Left inference with respect to \prec, where clauses are always condensed.

