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commutative, they are equivalent. One or two columns in the truth table for the
two subformulas? Again, saving a column is beneficial but in general, detecting
equivalence of two subformulas may become as difficult as checking whether the
overall formula is valid. A compromise, often performed in practice, are normal
forms that guarantee that certain occurrences of equivalent subformulas can be
found in polynomial time. For the running example, we can simply assume some
ordering on the propositional variables and assume that for a disjunction of two
propositional variables, the smaller variable always comes first. So if P < Q
then the normal form of P ∨Q and Q ∨ P is in fact P ∨Q.

C

In practice, nobody uses truth tables as a reasoning procedure. Worst
case, computing a truth table for checking the status of a formula φ
requires O(2n) steps, where n is the number of different propositional

variables in φ. But this is actually not the reason why the procedure is imprac-
tical, because the worst case behavior of all other procedures for propositional
logic known today is also of exponential complexity. So why are truth tables
not a good procedure? The answer is: because they do not adapt to the inher-
ent structure of a formula. The reasoning mechanism of a truth table for two
formulas φ and ψ sharing the same propositional variables is exactly the same:
we enumerate all valuations. However, if φ is, e.g., of the form φ = P ∧ φ′ and
we are interested in the satisfiability of φ, then φ can only become true for a
valuation A with A(P ) = 1. Hence, 2n−1 rows of φ’s truth table are superflu-
ous. All procedures I will introduce in the sequel, automatically detect this (and
further) specific structures of a formula and use it to speed up the reasoning
process.

2.4 Propositional Tableaux

Like resolution, semantic tableaux were developed in the sixties, independently
by Lis [33] and Smullyan [49] on the basis of work by Gentzen in the 30s [23]
and of Beth [8] in the 50s. For an at that time state of the art overview consider
Fitting’s book [21].

In contrast to the calculi introduced in subsequent sections, semantic tableau
does not rely on a normal form of input formulas but actually applies to any
propositional formula. The formulas are divided into α- and β-formulas, where
intuitively an α formula represents an (implicit) conjunction and a β formula
an (implicit) disjunction.

Definition 2.4.1 (α-, β-Formulas). A formula φ is called an α-formula if φ is
a formula ¬¬φ1, φ1 ∧ φ2, φ1 ↔ φ2, ¬(φ1 ∨ φ2), or ¬(φ1 → φ2). A formula φ is
called a β-formula if φ is a formula φ1∨φ2, φ1 → φ2, ¬(φ1∧φ2), or ¬(φ1 ↔ φ2).

A common property of α-, β-formulas is that they can be decomposed into
direct descendants representing (modulo negation) subformulas of the respective
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formulas. Then an α-formula is valid iff all its descendants are valid and a β-
formula is valid iff one of its descendants is valid. Therefore, the literature uses
both the notions semantic tableaux and analytic tableaux.

Definition 2.4.2 (Direct Descendant). Given an α- or β-formula φ, Figure 2.4
shows its direct descendants.

Duplicating φ for the α-descendants of ¬¬φ is a trick for conformity. Any
propositional formula is either an α-formula or a β-formula or a literal.

Proposition 2.4.3. For any valuation A: (i) if φ is an α-formula then A(φ) = 1
iff A(φ1) = 1 and A(φ2) = 1 for its descendants φ1, φ2. (ii) if φ is a β-formula
then A(φ) = 1 iff A(φ1) = 1 or A(φ2) = 1 for its descendants φ1, φ2.

The tableau calculus operates on states that are sets of sequences of for-
mulas. Semantically, the set represents a disjunction of sequences that are in-
terpreted as conjunctions of the respective formulas. A sequence of formulas
(φ1, . . . , φn) is called closed if there are two formulas φi and φj in the sequence
where φi = comp(φj). A state is closed if all its formula sequences are closed. A
state actually represents a tree and this tree is called a tableau in the literature.
So if a state is closed, the respective tree, the tableau is closed too. The tableau
calculus is a calculus showing unsatisfiability of a formula. Such calculi are called
refutational calculi. Later on soundness and completeness of the calculus imply
that a formula φ is valid iff the rules of tableau produce a closed state starting
with N = {(¬φ)}.

A formula φ occurring in some sequence is called open if in case φ is an
α-formula not both direct descendants are already part of the sequence and if
it is a β-formula none of its descendants is part of the sequence.

α-Expansion N]{(φ1, . . . , ψ, . . . , φn)} ⇒T N]{(φ1, . . . , ψ, . . . , φn, ψ1, ψ2)}
provided ψ is an open α-formula, ψ1, ψ2 its direct descendants and the sequence
is not closed.

β-Expansion N]{(φ1, . . . , ψ, . . . , φn)} ⇒T N]{(φ1, . . . , ψ, . . . , φn, ψ1)}]
{(φ1, . . . , ψ, . . . , φn, ψ2)}
provided ψ is an open β-formula, ψ1, ψ2 its direct descendants and the sequence
is not closed.

For example, consider proving validity of the formula (P ∧ ¬(Q ∨ ¬R)) →
(Q ∧R). Applying the tableau rules generates the following derivation:

{(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)])}
α-Expansion⇒∗T {(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)],
P ∧ ¬(Q ∨ ¬R),¬(Q ∧R), P,¬(Q ∨ ¬R),¬Q,¬¬R,R)}

β-Expansion⇒T {(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)],
P ∧ ¬(Q ∨ ¬R),¬(Q ∧R), P,¬(Q ∨ ¬R),¬Q,¬¬R,R,¬Q),
(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)],
P ∧ ¬(Q ∨ ¬R),¬(Q ∧R), P,¬(Q ∨ ¬R),¬Q,¬¬R,R,¬R)}
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The state after β-expansion is final, i.e., no more rule can be applied. The first
sequence is not closed, whereas the second sequence is closed because it contains
R and ¬R. Thus, the formula is not valid but satisfiable. A tree representation,
where common formulas of sequences are shared, can be found in Figure 2.5.
This is the traditional way of tableau presentation.

Theorem 2.4.4 (Propositional Tableau is Sound). If for a formula φ the tableau
calculus computes {(¬φ)} ⇒∗T N and N is closed, then φ is valid.

Proof. It is sufficient to show the following: (i) if N is closed then the disjunction
of the conjunction of all sequence formulas is unsatisfiable (ii) the two tableau
rules preserve satisfiability.

Part (i) is obvious: if N is closed all its sequences are closed. A sequence is
closed if it contains a formula and its negation. The conjunction of two such
formulas is unsatisfiable.

Part (ii) is shown by induction on the length of the derivation and then by
a case analysis for the two rules. α-Expansion: for any valuation A if A(ψ) = 1
then A(ψ1) = A(ψ2) = 1. β-Expansion: for any valuation A if A(ψ) = 1 then
A(ψ1) = 1 or A(ψ2) = 1 (see Proposition 2.4.3).

Theorem 2.4.5 (Propositional Tableau Terminates). Starting from a start
state {(φ)} for some formula φ, the relation ⇒+

T is well-founded.

Proof. Take the two-folded multiset extension of the lexicographic extension of
> on the naturals to triples (n, k, l) generated by the a measure µ. It is first
defined on formulas by µ(φ) := (n, k, l) where n is the number of equivalence
symbols in φ, k is the sum of all disjunction, conjunction, implication symbols
in φ and l is |φ|. On sequences (φ1, . . . , φn) the measure is defined to deliver
a multiset by µ((φ1, . . . , φn)) := {t1, . . . , tn} where ti = µ(φi) if φi is open in
the sequence and ti = (0, 0, 0) otherwise. Finally, µ is extended to states N by
computing the multiset µ(N) := {µ(s) | s ∈ N}.

Note, that α-, as well as β-expansion strictly extend sequences. Once a for-
mula is closed in a sequence by applying an expansion rule, it remains closed
forever in the sequence.

An α-expansion on a formula ψ1∧ψ2 on the sequence (φ1, . . . , ψ1∧ψ2, . . . , φn)
results in (φ1, . . . , ψ1 ∧ψ2, . . . , φn, ψ1, ψ2). It needs to be shown µ((φ1, . . . , ψ1 ∧
ψ2, . . . , φn)) >mul µ((φ1, . . . , ψ1 ∧ ψ2, . . . , φn, ψ1, ψ2)). In the second sequence
µ(ψ1 ∧ ψ2) = (0, 0, 0) because the formula is closed. For the triple (n, k, l)
assigned by µ to ψ1 ∧ ψ2 in the first sequence, it holds (n, k, l) >lex µ(ψ1),
(n, k, l) >lex µ(ψ2) and (n, k, l) >lex (0, 0, 0), the former because the ψi are
subformulas and the latter because l 6= 0. This proves the case.

A β-expansion on a formula ψ1∨ψ2 on the sequence (φ1, . . . , ψ1∨ψ2, . . . , φn)
results in (φ1, . . . , ψ1 ∨ψ2, . . . , φn, ψ1), (φ1, . . . , ψ1 ∨ψ2, . . . , φn, ψ2). It needs to
be shown µ((φ1, . . . , ψ1 ∨ψ2, . . . , φn)) >mul µ((φ1, . . . , ψ1 ∨ψ2, . . . , φn, ψ1)) and
µ((φ1, . . . , ψ1∨ψ2, . . . , φn)) >mul µ((φ1, . . . , ψ1∨ψ2, . . . , φn, ψ2)). In the derived
sequences µ(ψ1 ∨ ψ2) = (0, 0, 0) because the formula is closed. For the triple
(n, k, l) assigned by µ to ψ1 ∨ ψ2 in the starting sequence, it holds (n, k, l) >lex
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µ(ψ1), (n, k, l) >lex µ(ψ2) and (n, k, l) >lex (0, 0, 0), the former because the ψi
are subformulas and the latter because l 6= 0. This proves the case.

Theorem 2.4.6 (Propositional Tableau is Complete). If φ is valid, tableau
computes a closed state out of {(¬φ)}.

Proof. If φ is valid then ¬φ is unsatisfiable. Now assume after termination the
resulting state and hence at least one sequence is not closed. For this sequence
consider a valuation A consisting of the literals in the sequence. By assumption
there are no opposite literals, so A is well-defined. I prove by contradiction that
A is a model for the sequence. Assume it is not. Then there is a minimal formula
in the sequence, with respect to the ordering on triples considered in the proof
of Theorem 2.4.5, that is not satisfied by A. By definition of A the formula
cannot be a literal. So it is an α-formula or a β-formula. In all cases at least one
descendant formula is contained in the sequence, is smaller than the original
formula, false in A (Proposition 2.4.3) and hence contradicts the assumption.
Therefore, A satisfies the sequence contradicting that ¬φ is unsatisfiable.

Corollary 2.4.7 (Propositional Tableau generates Models). Let φ be a formula,
{(φ)} ⇒∗T N and s ∈ N be a sequence that is not closed and neither α-expansion
nor β-expansion are applicable to s. Then the literals in s form a (partial)
valuation that is a model for φ.

Proof. See Exercise ??.

Consider the example tableau shown in Figure 2.5. The open first branch
corresponds to the valuation A = {P,R,¬Q} which is a model of the formula
¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)].

C

The tableau calculus naturally evolves out of the semantics of the
operators. However, from a proof search and proof length point of
view it has severe deficits. Consider, for example, the abstract tableau
in Figure 2.6. Let’s assume it is closed. Let’s further assume that the closedness
does not depend on the Kj , K

′
j literals. Then there is an exponentially smaller

closed tableau for the formula that consists of picking exactly one of the identical
Li, L

′
i subtrees. The calculus does not “learn” from the fact that closedness does

not depend on the Kj , K
′
j literals. Actually, this can be overcome and one way

of looking at CDCL, Section 2.9, is to consider it as a solution to the problem
of unnecessary repetitions of already closed branches. Concerning proof length,
there are clause sets where an exponential blow up compared to resolution,
Section 2.6, or CDCL, Section 2.9, cannot be prevented. For example, on a
clause set where every clause rules out exactly one valuation of n variables,
the shortest resolution proof is exponentially shorter than the shortest tableau
proof. In addition, the resolution proof can be found in a deterministic way by
simplification, see Example 2.6.4. For two variables the respective clause set is
(P ∨Q) ∧ (P ∨ ¬Q) ∧ (¬P ∨Q) ∧ (¬P ∨ ¬Q).


