
38 CHAPTER 2. PROPOSITIONAL LOGIC

2.5 Normal Forms

In order to check the status of a formula φ via truth tables, the truth table
contains a column for each subformula of φ and all valuations for its variables.
Any shape of φ is fine in order to generate the respective truth table. The
superposition calculus (Section 2.7), The DPLL calculus (Section 2.8), and the
CDCL (Conflict Driven Clause Learning) calculus (Section 2.9) all operate on
a normal form, i.e., the shape of φ is restricted. All those calculi accept only
conjunctions of disjunctions of literals, a particular normal form. It is called
Clause Normal Form or simply CNF. The purpose of this section is to show
that an arbitrary formula φ can be effectively and efficiently transformed into a
formula in CNF, preserving at least satisfiability. Efficient transformations are
typically not equivalence preserving because they introduce fresh propositional
variables. Superposition, DPLL, and CDCL are all refutational calculi, so a
satisfiability preserving normal form transformation is fine.

2.5.1 Conjunctive and Disjunctive Normal Forms

Both conjunctive and disjunctive normal forms only use the operators ∧ and ∨
on top of literals. So all other operators need to be translated into a combination
of ∧, ∨ and ¬ and eventually negations have to be pushed downwards the formula
in front of atoms. The crucial operator is an equivalence ↔, because a formula
φ ↔ ψ is logically equivalent to the formula (¬φ ∨ ψ) ∧ (¬ψ ∨ φ). However, in
the letter formula the occurrences of φ and ψ have been duplicated. Replacing a
formula of nested ↔ occurrences that way results therefore in an exponentially
larger formula.

A CNF is a conjunction of disjunction of literals, e.g., a formula (P∨ 6=
Q)(P ∨R). A formula containing only the operators ∧, ∨ and literals can always
be transformed into a conjunction of disjunctions via the application of the
distributivity law. For example the formula φ ∨ (ψ1 ∧ ψ2) results in (φ ∨ ψ1) ∧
(φ ∨ ψ2) after pushing this disjunction inside. Again, similar to the effect of
replacing an equivalence, the formula φ is duplicated. Turing a deep nesting
of ∧ operators below ∨ operators may therefore also result in an exponentially
larger formula. A dual property holds for the disjunctive normal form.

In the sequel I’ll define the respective normal forms and present various
calculi and algorithms for normal form transformations. The more sophisticated
algorithms, Algorithm 3, Algorithm 4, transform any formula into a satisfiability
preserving CNF in linear time.

Definition 2.5.1 (CNF, DNF). A formula is in conjunctive normal form (CNF)
or clause normal form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction of
conjunctions of literals.

2.5. NORMAL FORMS 39

TThe definition of the propositional language, Definition 2.1.1, consid-
ers only binary conjunctions and disjunctions,. Both operators are AC
(Associative and Commutative) thus an n-ary usage of the operators as well as a
set notation is compatible with the semantics. Actually, I will use all three nota-
tions, binary operators, n-ary operators as well as set notations interchangeably,
whatever fits best in the respective context.

So a CNF has the form
∧
i

∨
j Lj and a DNF the form

∨
i

∧
j Lj where the Lj

are literals. In the sequel the logical notation with ∨ is overloaded with a multiset
notation. Both the disjunction L1 ∨ . . . ∨ Ln and the multiset {L1, . . . , Ln} are
clauses. For clauses the letters C, D, possibly indexed are used. Furthermore, a
conjunction of clauses is considered as a set of clauses. Then, for a set of clauses,
the empty set denotes >. For a clause, the empty multiset denotes ∅ and at the
same time ⊥.

T

Although CNF and DNF are defined in almost any text book on au-
tomated reasoning, the definitions in the literature differ with respect
to the “border” cases: (i) are complementary literals permitted in a
clause? (ii) are duplicated literals permitted in a clause? (iii) are empty dis-
junctions/conjunctions permitted? The above Definition 2.5.1 answers all three
questions with “yes”. A clause containing complementary literals is valid, as in
P ∨Q∨¬P . Duplicate literals may occur, as in P ∨Q∨P . The empty disjunction
is ⊥ and the empty conjunction >, i.e., the empty disjunction is always false
while the empty conjunction is always true.

Checking the validity of CNF formulas or the unsatisfiability of DNF formu-
las is easy: (i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and ¬P , (ii) conversely, a formula
in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of
complementary literals P and ¬P (see Exercise ??).

C

On the other hand, checking the unsatisfiability of CNF formulas or
the validity of DNF formulas is coNP-complete. For any propositional
formula φ there is an equivalent formula in CNF and DNF and I will
prove this below by actually providing an effective procedure for the transforma-
tion. However, also because of the above comment on validity and satisfiability
checking for CNF and DNF formulas, respectively, the transformation is costly.
In general, a CNF or DNF of a formula φ is exponentially larger than φ as long
as the normal forms need to be logically equivalent. If this is not needed, then
by the introduction of fresh propositional variables, CNF normal forms for φ
can be computed in linear time in the size of φ. More concretely, given a formula
φ instead of checking validity the unsatisfiability of ¬φ can be considered. Then
the linear time CNF normal form algorithm (see Section 2.5.3) is satisfiability
preserving, i.e., the linear time CNF of ¬φ is unsatisfiable iff ¬φ is.

Proposition 2.5.2. For every formula there is an equivalent formula in CNF
and also an equivalent formula in DNF.

Proof. See the rewrite systems⇒BCNF, and⇒ACNF below and the lemmata on
their properties.

40 CHAPTER 2. PROPOSITIONAL LOGIC

2.5.2 Basic CNF/DNF Transformation

The below algorithm bcnf is a basic algorithm for transforming any propositional
formula into CNF, or DNF if the rule PushDisj is replaced by PushConj.

Algorithm 2: bcnf(φ)

Input : A propositional formula φ.
Output: A propositional formula ψ equivalent to φ in CNF.

1 whilerule (ElimEquiv(φ)) do ;
2 whilerule (ElimImp(φ)) do ;
3 whilerule (ElimTB1(φ),. . .,ElimTB6(φ)) do ;
4 whilerule (PushNeg1(φ),. . .,PushNeg3(φ)) do ;
5 whilerule (PushDisj(φ)) do ;
6 return φ;

In the sequel I study only the CNF version of the algorithm. All properties
hold in an analogous way for the DNF version. To start an informal analysis of
the algorithm, consider the following example CNF transformation.

Example 2.5.3. Consider the formula ¬((P ∨Q) ↔ (P → (Q ∧ >))) and the
application of ⇒BCNF depicted in Figure 2.8. Already for this simple formula
the CNF transformation via ⇒BCNF becomes quite messy. Note that the CNF
result in Figure 2.8 is highly redundant. If I remove all disjunctions that are
trivially true, because they contain a propositional literal and its negation, the
result becomes

(P ∨ ¬Q) ∧ (¬Q ∨ ¬P) ∧ (¬Q ∨ ¬Q)
now elimination of duplicate literals beautifies the third clause and the overall
formula into

(P ∨ ¬Q) ∧ (¬Q ∨ ¬P) ∧ ¬Q.
Now let’s inspect this formula a little closer. Any valuation satisfying the formula
must set A(Q) = 0, because of the third clause. But then the first two clauses are
already satisfied. The formula ¬Q subsumes the formulas P ∨¬Q and ¬Q∨¬P
in this sense. The notion of subsumption will be discussed in detail for clauses
in Section 2.6. So it is eventually equivalent to

¬Q.
The correctness of the result is obvious by looking at the original formula and
doing a case analysis. For any valuation A with A(Q) = 1 the two parts of the
equivalence become true, independently of P , so the overall formula is false.
For A(Q) = 0, for any value of P , the truth values of the two sides of the
equivalence are different, so the equivalence becomes false and hence the overall
formula true.

After proving ⇒BCNF correct and terminating, in the succeeding section,
Section 2.5.3, I will present an algorithm ⇒ACNF that actually generates a
much more compact CNF out of ¬((P ∨ Q) ↔ (P → (Q ∧ >))) and does this
without generating the mess of formulas⇒BCNF does, see Figure 2.10. Applying

2.5. NORMAL FORMS 41

standard redundancy elimination rules Tautology Deletion, Condensation, and
Subsumption, see Section 2.6 and Section 2.7, then actually generates ¬Q as the
overall result. Please recall that the above rules apply modulo commutativity of
∨, ∧, e.g., the rule ElimTB1 is both applicable to the formulas φ∧> and >∧φ.

I

The equivalences in Figure 2.1 suggest more potential for simplifi-
cation. For example, the idempotency equivalences (φ ∧ φ) ↔ φ,
(φ∨ φ)↔ φ can be turned into simplification rules by applying them
left to right. However, the way they are stated they can only be applied in
case of identical subformulas. The formula (P ∨ Q) ∧ (Q ∨ P) does this way
not reduce to (Q ∨ P). A solution is to consider identity modulo commuta-
tivity. But then identity modulo commutativity and associativity (AC) as in
((P ∨Q)∨R)∧ (Q∨ (R∨P) is still not detected. On the other hand, in practice,
checking identity modulo AC is often too expensive. An elegant way out of this
situation is to implement AC connectives like ∨ or ∧ with flexible arity, to nor-
malize nested occurrences of the connectives, and finally to sort the arguments
using some total ordering. Applying this to ((P ∨Q) ∨R) ∧ (Q ∨ (R ∨ P) with
ordering R > P > Q the result is (Q ∨ P ∨ R) ∧ (Q ∨ P ∨ R). Now complete
AC simplification is back at the cost of checking for identical subformulas. Note
that in an appropriate implementation, the normalization and ordering process
is only done once at the start and then normalization and argument ordering is
kept as an invariant.

2.5.3 Advanced CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 can be improved in
various ways: (i) more aggressive formula simplification, (ii) renaming, (iii) po-
larity dependant transformations. The before studied Example 2.5.3 serves al-
ready as a nice motivation for (i) and (iii). Firstly, removing > from the formula
¬((P ∨Q)↔ (P → (Q∧>))) first and not in the middle of the algorithm obvi-
ously shortens the overall process. Secondly, if the equivalence is replaced polar-
ity dependant, i.e., using the equivalence (φ↔ ψ)↔ (φ∧ψ)∨(¬φ∧¬ψ) and not
the one used in rule ElimEquiv applied before, a lot of redundancy generated
by ⇒BCNF is prevented. In general, if ψ[φ1 ↔ φ2]p and pol(ψ, p) = −1 then for
CNF transformation the equivalence is replaced by ψ[(φ1 ∧ φ2)∨ (¬φ1 ∧¬φ2)]p
and if pol(ψ, p) = 1 by ψ[(φ1 → φ2) ∧ (φ2 → φ1)]p in ψ.

Item (ii) can be motivated by a formula

P1 ↔ (P2 ↔ (P3 ↔ (. . . (Pn−1 ↔ Pn) . . .)))

where Algorithm 2 generates a CNF with 2n−1 clauses out of this formula. The
way out of this problem is the introduction of additional fresh propositional
variables that rename subformulas. The price to pay is that a renamed formula
is not equivalent to the original formula due to the extra propositional variables,
but satisfiability preserving. A renamed formula for the above formula is

(P1 ↔ (P2 ↔ Q1)) ∧ (Q1 ↔ (P3 ↔ Q2)) ∧ . . .

42 CHAPTER 2. PROPOSITIONAL LOGIC

where the Qi are additional, fresh propositional variables. The number of clauses
of the CNF of this formula is 4(n−1) where each conjunct (Qi ↔ (Pj ↔ Qi+1))
contributes four clauses.

Proposition 2.5.4. Let P be a propositional variable not occurring in ψ[φ]p.

1. If pol(ψ, p) = 1, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (P → φ) is
satisfiable.

2. If pol(ψ, p) = −1, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (φ→ P)
is satisfiable.

3. If pol(ψ, p) = 0, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (P ↔ φ) is
satisfiable.

Proof. Exercise.

So depending on the formula ψ, the position p where the variable P is in-
troduced, the definition of P is given by

def(ψ, p, P) :=

 (P → ψ|p) if pol(ψ, p) = 1
(ψ|p → P) if pol(ψ, p) = −1
(P ↔ ψ|p) if pol(ψ, p) = 0

C

The polarity dependent definition of some predicate P introduces
fewer clauses in case pol(ψ, p) has polarity 1 or -1. Still, even if al-
ways an equivalence is used to define predicates, for a properly chosen

renaming the number of eventually generated clauses remains polynomial. De-
pending on the afterwards used calculus the former or latter results in a typically
smaller search space. If a calculus relies on an explicitly building a partial model,
e.g., CDCL, Section 2.9 and Section 2.10, then always defining predicates via
equivalences is to be preferred. It guarantees that once the valuation of all vari-
ables in ψ|p is determined, also the value P is determined by propagation. If a
calculus relies on building inferences in a syntactic way, e.g., Resolution, Sec-
tion 2.6 and Section 2.12, then using a polarity dependent definition of P results
in fewer inference opportunities.

For renaming there are several choices which subformula to choose. Ob-
viously, since a formula has only linearly many subformulas, renaming every
subformula works [50, 41]. However, this produces a number of renamings that
do even increase the size of an eventual CNF. For example renaming in ψ[¬φ]p
the subformulas ¬φ and φ at positions p, p1, respectively, produces more clauses
than just renaming one position out of the two. This will be captured below by
the notion of an obvious position. Then, in the following section a renaming
variant is introduced that actually produces smallest CNFs. For all variants,
renaming relies on a set of positions {p1, . . . , pn} that are replaced by fresh
propositional variables.

2.5. NORMAL FORMS 43

SimpleRenaming φ ⇒SimpRen φ[P1]p1 [P2]p2 . . . [Pn]pn ∧ def(φ, p1, P1) ∧
. . . ∧ def(φ[P1]p1 [P2]p2 . . . [Pn−1]pn−1 , pn, Pn)

provided {p1, . . . , pn} ⊂ pos(φ) and for all i, i + j either pi ‖ pi+j or pi > pi+j
and the Pi are different and new to φ

The term φ[P1]p1
[P2]p2

. . . [Pn]pn is evaluated left to right, i.e., a shorthand
for (. . . ((φ[P1]p1

)[P2]p2
) . . . [Pn]pn). Actually, the rule SimpleRenaming does not

provide an effective way to compute the set {p1, . . . , pn} of positions in φ to be
renamed. Where are several choices. Following Plaisted and Greenbaum [41], the
set contains all positions from φ that do not point to a propositional variable or
a negation symbol. In addition, renaming position ε does not make sense because
it would generate the formula P ∧ (P → φ) which results in more clauses than
just φ. Choosing the set of Plaisted and Greenbaum prevents the explosion in
the number of clauses during CNF transformation. But not all renamings are
needed to this end.

A smaller set of positions from φ, called obvious positions, is still preventing
the explosion and given by the rules: (i) p is an obvious position if φ|p is an
equivalence and there is a position q < p such that φ|q is either an equivalence
or disjunctive in φ or (ii) pq is an obvious position, q 6= ε, if φ|pq is a conjunctive
formula in φ, φ|p is a disjunctive formula in φ and for all positions r with
p < r < pq the formula φ|r is not a conjunctive formula.

A formula φ|p is conjunctive in φ if φ|p is a conjunction and pol(φ, p) ∈ {0, 1}
or φ|p is a disjunction or implication and pol(φ, p) ∈ {0,−1}. Analogously,
a formula φ|p is disjunctive in φ if φ|p is a disjunction or implication and
pol(φ, p) ∈ {0, 1} or φ|p is a conjunction and pol(φ, p) ∈ {0,−1}.

Example 2.5.5. Consider as an example the formula

φ = [¬(¬P ∨ (Q ∧R))]→ [P ∨ (¬Q↔ ¬R)] .

Its tree representation as well as the polarity and position of each node is shown
in Figure 2.9. Then the set of obvious positions is

{22, 112}

where 22 is obvious, because φ|22 is an equivalence and φ|2 is disjunctive, case (i)
of the above definition. The position 112 is obvious, because it is conjunctive
and φ|11 is a disjunctive formula, case (ii) of the above definition. Both positions
are also considered by the Plaisted and Greenbaum definition, but they also add
the positions {11, 2} to this set, resulting in the set

{2, 22, 11, 112}.

Then applying SimpleRenaming to φ with respect to obvious positions results
in

[¬(¬P ∨ P1)]→ [P ∨ P2] ∧ (P1 → (Q ∧R)) ∧ (P2 → (¬Q↔ ¬R))

44 CHAPTER 2. PROPOSITIONAL LOGIC

and applying SimpleRenaming with respect to the Plaisted Greenbaum positions
results in

[¬P3]→ [P4] ∧ (P1 → (Q ∧R)) ∧ (P2 → (¬Q↔ ¬R)) ∧
(P3 → (¬P ∨ P1)) ∧ (P4 → (P ∨ P2))

where I applied in both cases a polarity dependent definition of the freshly
introduced propositional variables. A CNF generated by bcnf out of the renamed
formula using obvious positions results in 5 clauses, where the renamed formula
using the Plaisted Greenbaum positions results in 7 clauses.

I

Formulas are naturally implemented by trees in the style of the tree
in Figure 2.9. Every node contains the connective of the respective
subtree and an array with pointers to its children. Optionally, there

is also a back-pointer to the father of a node. Then a subformula at a particular
position can be represented by a pointer to the respective subtree. The polarity
or position of a subformula can either be a stored additionally in each node, or,
if back-pointers are available, it can be efficiently computed by traversing all
nodes up to the root.

The before mentioned polarity dependent transformations for equivalences
are realized by the following two rules:

ElimEquiv1 χ[(φ↔ ψ)]p ⇒ACNF χ[(φ→ ψ) ∧ (ψ → φ)]p

provided pol(χ, p) ∈ {0, 1}

ElimEquiv2 χ[(φ↔ ψ)]p ⇒ACNF χ[(φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)]p

provided pol(χ, p) = −1

Furthermore, the advanced algorithm eliminates > and ⊥ before eliminating
↔ and →. Therefore the respective rules are added:

ElimTB7 χ[φ→ ⊥]p ⇒ACNF χ[¬φ]p
ElimTB8 χ[⊥ → φ]p ⇒ACNF χ[>]p
ElimTB9 χ[φ→ >]p ⇒ACNF χ[>]p
ElimTB10 χ[> → φ]p ⇒ACNF χ[φ]p
ElimTB11 χ[φ↔ ⊥]p ⇒ACNF χ[¬φ]p
ElimTB12 χ[φ↔ >]p ⇒ACNF χ[φ]p

where the two rules ElimTB11, ElimTB12 for equivalences are applied with
respect to commutativity of ↔.

I

For an implementation the Algorithm 3 can be further improved. For
example, once equivalences are eliminated the polarity of each literal
is exactly known. So eliminating implications and pushing negations

inside is not needed. Instead the eventual CNF can be directly constructed from
the formula.

2.5. NORMAL FORMS 45

Algorithm 3: acnf(φ)

Input : A formula φ.
Output: A formula ψ in CNF satisfiability preserving to φ.

1 whilerule (ElimTB1(φ),. . .,ElimTB12(φ)) do ;
2 SimpleRenaming(φ) on obvious positions;
3 whilerule (ElimEquiv1(φ),ElimEquiv2(φ)) do ;
4 whilerule (ElimImp(φ)) do ;
5 whilerule (PushNeg1(φ),. . .,PushNeg3(φ)) do ;
6 whilerule (PushDisj(φ)) do ;
7 return φ;

Proposition 2.5.6 (Models of Renamed Formulas). Let φ be a formula and
φ′ a renamed CNF of φ computed by acnf. Then any (partial) model A of φ′ is
also a model for φ.

Proof. By an inductive argument it is sufficient to consider one renaming appli-
cation, i.e., φ′ = φ[P]p∧def(φ, p, P). There are three cases depending on the po-
larity. (i) if pol(φ, p) = 1 then φ′ = φ[P]p∧P → φ|p. IfA(P) = 1 thenA(φ|p) = 1
and hence A(φ) = 1. The interesting case is A(P) = 0 and A(φ|p) = 1. But
then because pol(φ, p) = 1 also A(φ) = 1 by Lemma 2.2.7. (ii) if pol(φ, p) = −1
the case is symmetric to the previous one. Finally, (iii) if pol(φ, p) = 0 for any
A satisfying φ′ it holds A(φ|p) = A(P) and hence A(φ) = 1.

Note that Proposition 2.5.6 does not hold the other way round. Whenever a
formula is manipulated by introducing fresh symbols, the truth of the original
formula does not depend on the truth of the fresh symbols. For example, consider
the formula

φ ∨ ψ

which is renamed to

φ ∨ P ∧ P → ψ

.
Then any interpretation A with A(φ) = 1 is a model for φ ∨ ψ. It is not

necessarily a model for φ ∨ P ∧ P → ψ. If A(P) = 1 and A(ψ) = 0 it does not
satisfy φ ∨ P ∧ P → ψ.

C

The introduction of fresh symbols typically does not preserve validity
but only satisfiability of formulas. Hence, it is well-suited for refuta-
tional reasoning based on a CNF, but not for equivalence reasoning
based on a DNF. On the other hand renaming is mandatory to prevent a po-
tential explosion of the formula size by normal form transformation. This is
one explanation while typical automated reasoning calculi rely on a CNF. An
alternative would be to develop automated reasoning calculi like resolution or

