
2.6. PROPOSITIONAL RESOLUTION 51

Applying this rule with respect to commutativity of ∨ means, for example, that
both the formulas (φ∨ (φ∧ψ)) and ((φ∧ψ)∨φ) can be transformed by the rule
to φ where in both cases p = ε. Rules are always applied modulo associativity
and commutativity of ∧, ∨.

The procedure is depicted in Algorithm 4. Although computing ac for Step 2
is not practical in general, because the function is exponentially growing, the
test ac(ψ[φ]p) > ac(ψ[P]p∧def(ψ, p, P)) can be computed in constant time after
a linear time processing phase, see the implementation comment above.

Algorithm 4: ocnf(φ)

Input : A formula φ.
Output: A formula ψ in CNF satisfiability preserving to φ.

1 whilerule (ElimRedI(φ),ElimRedV(φ),ElimRedVII(φ)) do ;
2 SimpleRenaming(φ) on beneficial positions;
3 whilerule (ElimEquiv1(φ),ElimEquiv2(φ)) do ;
4 whilerule (ElimImp(φ)) do ;
5 whilerule (PushNeg1(φ),. . .,PushNeg3(φ)) do ;
6 whilerule (PushDisj(φ)) do ;
7 return φ;

Applying Algorithm 4 to the formula ¬((P ∨ Q) ↔ (P → (Q ∧ >))) of
Example 2.5.3 results in the transformation depicted in Figure 2.10, page 119.
Looking at the result it is already very close to ¬Q, as it contains the clause
(¬Q ∨ ¬Q). Removing duplicate literals in clauses and removing clauses con-
taining complementary literals from the result yields

(¬P ∨ ¬Q) ∧ (¬Q ∨ P) ∧ ¬Q
which is even closer to just ¬Q. The first two clauses can actually be removed
because they are subsumed by ¬Q, i.e., considered as multisets, ¬Q is a subset
of these clauses. Subsumption will be introduced in Section 2.6. Logically, they
can be removed because ¬Q has to be true for any satisfying assignment of the
formula and then the first two clauses are satisfied anyway.

2.6 Propositional Resolution

The propositional resolution calculus operates on a set of clauses and tests
unsatisfiability. This enables advanced CNF transformation and, in particular,
renaming, see Section 2.5.3. In order to check validity of a formula φ we check
unsatisfiability of the clauses generated from ¬φ.

Recall, see Section 2.1, that for clauses I switch between the notation as a
disjunction, e.g., P ∨Q∨P ∨¬R, and the multiset notation, e.g., {P,Q, P,¬R}.
This makes no difference as we consider ∨ in the context of clauses always
modulo AC. Note that ⊥, the empty disjunction, corresponds to ∅, the empty
multiset. Clauses are typically denoted by letters C, D, possibly with subscript.

52 CHAPTER 2. PROPOSITIONAL LOGIC

The resolution calculus consists of the inference rules Resolution and Fac-
toring. So, if we consider clause sets N as states,] is disjoint union, we get the
inference rules

Resolution (N]{C1∨P,C2∨¬P}) ⇒RES (N∪{C1∨P,C2∨¬P}∪{C1∨C2})

Factoring (N] {C ∨ L ∨ L}) ⇒RES (N ∪ {C ∨ L ∨ L} ∪ {C ∨ L})

Theorem 2.6.1. The resolution calculus is sound and complete:
N is unsatisfiable iff N ⇒∗RES N

′ and ⊥ ∈ N ′ for some N ′

Proof. (⇐) Soundness means for all rules that N |= N ′ where N ′ is the clause
set obtained from N after applying Resolution or Factoring. For Resolution it
is sufficient to show that C1 ∨ P,C2 ∨ ¬P |= C1 ∨ C2. This is obvious by a case
analysis of valuations satisfying C1∨P,C2∨¬P : if P is true in such a valuation
so must be C2, hence C1 ∨ C2. If P is false in some valuation then C1 must
be true and so C1 ∨ C2. Soundness for Factoring is obvious this way because it
simply removes a duplicate literal in the respective clause.

(⇒) The traditional method of proving resolution completeness are semantic
trees. A semantic tree is a binary tree where the edges are labeled with literals
such that: (i) edges of children of the same parent are labeled with L and
comp(L), (ii) any node has either no or two children, and (iii) for any path from
the root to a leaf, each propositional variable occurs at most once. Therefore,
each path corresponds to a partial valuation. Now for an unsatisfiable clause
set N there is a finite semantic tree such that for each leaf of the tree there is
a clause from N that is false with respect to the partial valuation at that leaf.
By structural induction on the size of the tree we prove completeness. If the
tree consists of the root node, then ⊥ ∈ N . Now consider two sister leaves of
the same parent of this tree, where the edges are labeled with L and comp(L),
respectively. Let C1 and C2 be the two false clauses at the respective leaves. If
some Ci does neither contain L or comp(L) then Ci is also false at the parent,
finishing the case. So assume both C1 and C2 contain L or comp(L): C1 = C ′1∨L
and C2 = C ′2 ∨ ¬L. If C1 (or C2) contains further occurrences of L (or C2 of
comp(L)), then the rule Factoring is applied to eventually remove all additional
occurrences. Therefore, eventually L 6∈ C ′1 and comp(L) 6∈ C ′2. Note that if
some Ci contains both L and comp(L), the clause is a tautology, contradicting
the assumption that Ci is false at its leaf. A resolution step between these two
clauses on L yields C ′1∨C ′2 which is false at the parent of the two leaves, because
the resolvent neither contains L nor comp(L). Furthermore, the resulting tree
is smaller, proving completeness.

2.6. PROPOSITIONAL RESOLUTION 53

TIn the proof of Theorem 2.6.1 it is not required that the semantic
tree for some clause set is minimal. Instead, in case it is not mini-
mal, one of the leaf clauses is simply moved to the parent level and the tree
shrinks. The proof can also be done using minimal semantic trees. A semantic
tree is minimal if no clause can be moved upwards without violating a semantic
tree property. However, this complicates the proof a lot, because after a resolu-
tion step, the resulting semantic tree is not guaranteed to be minimal anymore.
Sometimes minimality assumptions help in proving completeness, see the com-
pleteness proof for propositional superposision, Section 2.7, but sometimes they
complicate proofs a lot.

Example 2.6.2 (Resolution Refutation Showing the Respective Semantic
Tree). Consider the clause set

N0 = {¬P ∨Q, P ∨ ¬Q, ¬P ∨ ¬Q, P ∨Q ∨ S, P ∨Q ∨ ¬S}

and the below sequence of semantic trees and resolution steps. The leaves are
always labeled with clauses that are falsified at the respective partial valuation:

[¬P ∨ ¬Q]

Q

[¬P ∨Q]

¬Q

P

[P ∨ ¬Q]

Q

[P ∨Q ∨ ¬S]

S

[P ∨Q ∨ S]

¬S

¬Q

¬P

The first inference cuts the rightmost branch

1 N0 ⇒RES N0 ∪ {P ∨ P ∨Q ∨Q}

by resolving on literal S. The clause set of the ith inference is always referred
Ni, e.g., the above resulting clause set is N1 = N0 ∪ {P ∨ P ∨ Q ∨ Q}. The
duplicate literals can be eliminated by two factoring steps.

2 N1 ⇒RES N1 ∪ {P ∨Q ∨Q}
3 N2 ⇒RES N2 ∪ {P ∨Q}

and the semantic tree is cut using the clause P ∨Q.

54 CHAPTER 2. PROPOSITIONAL LOGIC

[¬P ∨ ¬Q]

Q

[¬P ∨Q]

¬Q

P

[P ∨ ¬Q]

Q

[P ∨Q]

¬Q

¬P

The next inferences result in cuts to both the left branch and the right branch
by resolving on the respective Q literals and removing resulting duplicate literal
occurrences by Factoring applications.

4 N3 ⇒RES N3 ∪ {¬P ∨ ¬P}
5 N4 ⇒RES N4 ∪ {¬P}
6 N5 ⇒RES N5 ∪ {P ∨ P}
7 N6 ⇒RES N6 ∪ {P}

[¬P]

P

[P]

¬P

Finally, a resolution step between the clauses P and ¬P yields the empty clause
⊥.

[⊥]

Example 2.6.3 (Resolution Completeness). The semantic tree for the clause
set

P ∨Q ∨ S, ¬P ∨Q ∨ S, P ∨ ¬Q ∨ S, ¬P ∨ ¬Q ∨ S,
P ∨Q ∨ ¬S, ¬P ∨Q ∨ ¬S, P ∨ ¬Q ∨ ¬S, ¬P ∨ ¬Q ∨ ¬S

is shown in Figure 2.13.

The resolution calculus is complete just by using Resolution and Factoring.
But the rules always extend a clause set. It gets larger both with respect to
the number of clauses and the overall number of literals. It is practically very
important to keep clause sets small. Therefore, so called reduction rules have
been invented that actually reduce a clause set with respect to the number of
clauses or overall number of literals.

The crucial question is whether adding such rules preserves completeness.
This can become non-obvious. For the resolution calculus, the below rules are
commonly used.

Subsumption (N] {C1, C2}) ⇒RES (N ∪ {C1})

2.6. PROPOSITIONAL RESOLUTION 55

provided C1 ⊂ C2

Tautology Dele-
tion

(N] {C ∨ P ∨ ¬P}) ⇒RES (N)

Condensation (N] {C1 ∨ L ∨ L}) ⇒RES (N ∪ {C1 ∨ L})

Subsumption
Resolution

(N] {C1 ∨L,C2 ∨ comp(L)}) ⇒RES (N ∪ {C1 ∨L,C2})

where C1 ⊆ C2

Note the different nature of inference rules and reduction rules. Resolution
and Factorization only add clauses to the set whereas Subsumption, Tautol-
ogy Deletion and Condensation delete clauses or replace clauses by “simpler”
ones. In the next section, Section 2.7, I will show what “simpler” means. For
the resolution calculus, the semantic tree proof can actually be reformulated
incorporating the four reduction rules, see Exercise ??.

Example 2.6.4 (Refutation by Simplification). Consider the clause set

N = {P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q}

that can be deterministically refuted by Subsumption Resolution:

({P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q})
⇒SubRes

RES ({P ∨Q, P, ¬P ∨Q, ¬P ∨ ¬Q})
⇒Subumption

RES ({P, ¬P ∨Q, ¬P ∨ ¬Q})
⇒SubRes

RES ({P, Q, ¬P ∨ ¬Q})
⇒SubRes

RES ({P, Q, ¬Q})
⇒SubRes

RES ({P, Q, ⊥})

where I abbreviated the rule Subumption Resolution by SubRes.

While the above example can be refuted by the rule Subsumption Resolution,
the Resolution rule itself may derive redundant clauses, e.g., a tautology.

({P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q})
⇒Resolution

RES ({P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q, Q ∨ ¬Q})

For three variables, the respective clause set is

({P ∨Q ∨R, P ∨ ¬Q ∨R, ¬P ∨Q ∨R, ¬P ∨ ¬Q ∨R,
P ∨Q ∨ ¬R, P ∨ ¬Q ∨ ¬R, ¬P ∨Q ∨ ¬R, ¬P ∨ ¬Q ∨ ¬R})

