Automated Reasoning I

Christoph Weidenbach

Max Planck Institute for Informatics

November 5, 2020
Outline

Preliminaries

Propositional Logic
Automated Reasoning

Given a specification of a system, develop technology

logics,
calculi,
algorithms,
implementations,

to automatically execute the specification and to automatically prove properties of the specification.
Concept

- **Slides**: Definitions, Lemmas, Theorems, . . .
- **Blackboard**: Examples, Proofs, . . .
- **Speech**: Motivate, Explain, . . .
- **Script**: Slides, partially Blackboard . . .
- **Exams**: able to calculate \rightarrow pass
 understand \rightarrow (very) good grade
Orderings

1.4.1 Definition (Orderings)

A (partial) ordering \succeq (or simply ordering) on a set M, denoted (M, \succeq), is a reflexive, antisymmetric, and transitive binary relation on M.

It is a total ordering if it also satisfies the totality property.

A strict (partial) ordering \succ is a transitive and irreflexive binary relation on M.

A strict ordering is well-founded, if there is no infinite descending chain $m_0 \succ m_1 \succ m_2 \succ \ldots$ where $m_i \in M$.
1.4.3 Definition (Minimal and Smallest Elements)

Given a strict ordering \((M, \succ)\), an element \(m \in M\) is called \textit{minimal}, if there is no element \(m' \in M\) so that \(m \succ m'\).

An element \(m \in M\) is called \textit{smallest}, if \(m' \succ m\) for all \(m' \in M\) different from \(m\).
Multisets

Given a set M, a multiset S over M is a mapping $S: M \rightarrow \mathbb{N}$, where S specifies the number of occurrences of elements m of the base set M within the multiset S. I use the standard set notations \in, \subset, \subseteq, \cup, \cap with the analogous meaning for multisets, for example $(S_1 \cup S_2)(m) = S_1(m) + S_2(m)$.

A multiset S over a set M is finite if $\{ m \in M \mid S(m) > 0 \}$ is finite. For the purpose of this lecture I only consider finite multisets.
1.4.5 Definition (Lexicographic and Multiset Ordering Extensions)

Let \((M_1, \succ_1)\) and \((M_2, \succ_2)\) be two strict orderings. Their *lexicographic combination* \(\succ_{\text{lex}} = (\succ_1, \succ_2)\) on \(M_1 \times M_2\) is defined as \((m_1, m_2) \succ (m'_1, m'_2)\) iff \(m_1 \succ_1 m'_1\) or \(m_1 = m'_1\) and \(m_2 \succ_2 m'_2\).

Let \((M, \succ)\) be a strict ordering. The *multiset extension* \(\succ_{\text{mul}}\) to multisets over \(M\) is defined by \(S_1 \succ_{\text{mul}} S_2\) iff \(S_1 \neq S_2\) and \(\forall m \in M [S_2(m) > S_1(m) \rightarrow \exists m' \in M (m' \succ m \wedge S_1(m') > S_2(m'))]\).
1.4.7 Proposition (Properties of \succ_{lex}, \succ_{mul})

Let (M, \succ), (M_1, \succ_1), and (M_2, \succ_2) be orderings. Then

1. \succ_{lex} is an ordering on $M_1 \times M_2$.
2. if (M_1, \succ_1), (M_2, \succ_2) are well-founded so is \succ_{lex}.
3. if (M_1, \succ_1), (M_2, \succ_2) are total so is \succ_{lex}.
4. \succ_{mul} is an ordering on multisets over M.
5. if (M, \succ) is well-founded so is \succ_{mul}.
6. if (M, \succ) is total so is \succ_{mul}.

Please recall that multisets are finite.
Theorem (Noetherian Induction)

Let \((M, \succ)\) be a well-founded ordering, and let \(Q\) be a predicate over elements of \(M\). If for all \(m \in M\) the implication

\[
\text{if } Q(m'), \text{ for all } m' \in M \text{ so that } m \succ m', \quad \text{(induction hypothesis)}
\]

then \(Q(m)\). \quad \text{(induction step)}

is satisfied, then the property \(Q(m)\) holds for all \(m \in M\).
Abstract Rewrite Systems

1.6.1 Definition (Rewrite System)

A *rewrite system* is a pair \((M, \rightarrow)\), where \(M\) is a non-empty set and \(\rightarrow \subseteq M \times M\) is a binary relation on \(M\).

\[

to^0 = \{(a, a) | a \in M\} \\
to^{i+1} = to^i \circ to \\
to^+ = \bigcup_{i>0} to^i \\
to^* = \bigcup_{i \geq 0} to^i = to^+ \cup to^0 \\
to = to \cup to^0 \\
to^{-1} = \leftarrow = \{(b, c) | c \rightarrow b\} \\
\leftrightarrow = to \cup \leftarrow \\
\leftrightarrow^+ = (\leftrightarrow)^+ \\
\leftrightarrow^* = (\leftrightarrow)^*
\]

Identity
i + 1-fold composition
Transitive closure
Reflexive transitive closure
Reflexive closure
Inverse
Symmetric closure
Transitive symmetric closure
Reflex. trans. symmetric closure
1.6.2 Definition (Reducible)

Let \((M, \rightarrow)\) be a rewrite system. An element \(a \in M\) is reducible, if there is a \(b \in M\) such that \(a \rightarrow b\).

An element \(a \in M\) is in normal form (irreducible), if it is not reducible.

An element \(c \in M\) is a normal form of \(b\), if \(b \rightarrow^* c\) and \(c\) is in normal form, denoted by \(c = b\downarrow\).

Two elements \(b\) and \(c\) are joinable, if there is an \(a\) so that \(b \rightarrow^* a \leftarrow^* c\), denoted by \(b \downarrow c\).
1.6.3 Definition (Properties of \rightarrow)

A relation \rightarrow is called

- **Church-Rosser** if $b \leftrightarrow^* c$ implies $b \downarrow c$
- **confluent** if $b \leftarrow^* a \rightarrow^* c$ implies $b \downarrow c$
- **locally confluent** if $b \leftarrow a \rightarrow c$ implies $b \downarrow c$
- **terminating** if there is no infinite descending chain $b_0 \rightarrow b_1 \rightarrow b_2 \ldots$
- **normalizing** if every $b \in A$ has a normal form
- **convergent** if it is confluent and terminating
1.6.4 Lemma (Termination vs. Normalization)
If \rightarrow is terminating, then it is normalizing.

1.6.5 Theorem (Church-Rosser vs. Confluence)
The following properties are equivalent for any (M, \rightarrow):
(i) \rightarrow has the Church-Rosser property.
(ii) \rightarrow is confluent.

1.6.6 Lemma (Newman’s Lemma)
Let (M, \rightarrow) be a terminating rewrite system. Then the following properties are equivalent:
(i) \rightarrow is confluent
(ii) \rightarrow is locally confluent
LA Equations Rewrite System

M is the set of all LA equations sets N over \mathbb{Q}

\models includes normalizing the equation

Eliminate \[\{x \models s, x \models t\} \cup N \Rightarrow_{\text{LAE}} \{x \models s, x \models t, s \models t\} \cup N \]

provided $s \neq t$, and $s \models t \notin N$

Fail \[\{q_1 \models q_2\} \cup N \Rightarrow_{\text{LAE}} \emptyset \]

provided $q_1, q_2 \in \mathbb{Q}$, $q_1 \neq q_2$
LAE Redundancy

Subsume \(\{ s \models t, s' \models t' \} \uplus N \Rightarrow_{\text{LAE}} \{ s \models t \} \cup N \)

provided \(s \models t \) and \(qs' \models qt' \) are identical for some \(q \in \mathbb{Q} \)
Rewrite Systems on Logics: Calculi

<table>
<thead>
<tr>
<th></th>
<th>Validity</th>
<th>Satisfiability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound</td>
<td>If the calculus derives a proof of validity for the formula, it is valid.</td>
<td>If the calculus derives satisfiability of the formula, it has a model.</td>
</tr>
<tr>
<td>Complete</td>
<td>If the formula is valid, a proof of validity is derivable by the calculus.</td>
<td>If the formula has a model, the calculus derives satisfiability.</td>
</tr>
<tr>
<td>Strongly Complete</td>
<td>For any validity proof of the formula, there is a derivation in the calculus producing this proof.</td>
<td>For any model of the formula, there is a derivation in the calculus producing this model.</td>
</tr>
</tbody>
</table>
2.1.1 Definition (Propositional Formula)

The set $\text{PROP}(\Sigma)$ of *propositional formulas* over a signature Σ, is inductively defined by:

<table>
<thead>
<tr>
<th>$\text{PROP}(\Sigma)$</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bot</td>
<td>connective \bot denotes “false”</td>
</tr>
<tr>
<td>\top</td>
<td>connective \top denotes “true”</td>
</tr>
<tr>
<td>P</td>
<td>for any propositional variable $P \in \Sigma$</td>
</tr>
<tr>
<td>$(\neg \phi)$</td>
<td>connective \neg denotes “negation”</td>
</tr>
<tr>
<td>$(\phi \land \psi)$</td>
<td>connective \land denotes “conjunction”</td>
</tr>
<tr>
<td>$(\phi \lor \psi)$</td>
<td>connective \lor denotes “disjunction”</td>
</tr>
<tr>
<td>$(\phi \rightarrow \psi)$</td>
<td>connective \rightarrow denotes “implication”</td>
</tr>
<tr>
<td>$(\phi \leftrightarrow \psi)$</td>
<td>connective \leftrightarrow denotes “equivalence”</td>
</tr>
</tbody>
</table>

where $\phi, \psi \in \text{PROP}(\Sigma)$.
Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)

A \(\Sigma \)-valuation is a map

\[
\mathcal{A} : \Sigma \rightarrow \{0, 1\}.
\]

where \(\{0, 1\} \) is the set of *truth values*. A *partial \(\Sigma \)-valuation* is a map \(\mathcal{A} : \Sigma' \rightarrow \{0, 1\} \) where \(\Sigma' \subseteq \Sigma \).
2.2.2 Definition (Semantics)

A Σ-valuation \mathcal{A} is inductively extended from propositional variables to propositional formulas $\phi, \psi \in \text{PROP}(\Sigma)$ by

- $\mathcal{A}(\bot) := 0$
- $\mathcal{A}(\top) := 1$
- $\mathcal{A}(\neg \phi) := 1 - \mathcal{A}(\phi)$
- $\mathcal{A}(\phi \land \psi) := \min(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\})$
- $\mathcal{A}(\phi \lor \psi) := \max(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\})$
- $\mathcal{A}(\phi \rightarrow \psi) := \max(\{1 - \mathcal{A}(\phi), \mathcal{A}(\psi)\})$
- $\mathcal{A}(\phi \leftrightarrow \psi) := \text{if } \mathcal{A}(\phi) = \mathcal{A}(\psi) \text{ then } 1 \text{ else } 0$
If $\mathcal{A}(\phi) = 1$ for some Σ-valuation \mathcal{A} of a formula ϕ then ϕ is *satisfiable* and we write $\mathcal{A} \models \phi$. In this case \mathcal{A} is a *model* of ϕ.

If $\mathcal{A}(\phi) = 1$ for all Σ-valuations \mathcal{A} of a formula ϕ then ϕ is *valid* and we write $\models \phi$.

If there is no Σ-valuation \mathcal{A} for a formula ϕ where $\mathcal{A}(\phi) = 1$ we say ϕ is *unsatisfiable*.

A formula ϕ *entails* ψ, written $\phi \models \psi$, if for all Σ-valuations \mathcal{A} whenever $\mathcal{A} \models \phi$ then $\mathcal{A} \models \psi$.