2.5.4 Proposition (Renaming Variables)

Let P be a propositional variable not occurring in $\psi[\phi]_p$.

1. If $\text{pol}(\psi, p) = 1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (P \rightarrow \phi)$ is satisfiable.

2. If $\text{pol}(\psi, p) = -1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (\phi \rightarrow P)$ is satisfiable.

3. If $\text{pol}(\psi, p) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (P \leftrightarrow \phi)$ is satisfiable.
Renaming

\textbf{SimpleRenaming} \quad \phi \Rightarrow_{\text{SimpRen}} \phi[P_1]_{p_1} [P_2]_{p_2} \cdots [P_n]_{p_n} \land \\
\text{def}(\phi, p_1, P_1) \land \cdots \land \text{def}(\phi[P_1]_{p_1} [P_2]_{p_2} \cdots [P_{n-1}]_{p_{n-1}}, p_n, P_n) \\
\text{provided } \{p_1, \ldots, p_n\} \subset \text{pos}(\phi) \text{ and for all } i, i + j \text{ either } p_i \parallel p_{i+j} \text{ or } p_i > p_{i+j} \text{ and the } P_i \text{ are different and new to } \phi

Simple choice: choose \{p_1, \ldots, p_n\} to be all non-literal and non-negation positions of \phi.
Renaming Definition

\[
\text{def}(\psi, p, P) := \begin{cases}
(P \rightarrow \psi|_p) & \text{if } \text{pol}(\psi, p) = 1 \\
(\psi|_p \rightarrow P) & \text{if } \text{pol}(\psi, p) = -1 \\
(P \leftrightarrow \psi|_p) & \text{if } \text{pol}(\psi, p) = 0
\end{cases}
\]
Obvious Positions

A smaller set of positions from ϕ, called *obvious positions*, is still preventing the explosion and given by the rules:

(i) p is an obvious position if $\phi|_p$ is an equivalence and there is a position $q < p$ such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or

(ii) pq is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ, $\phi|_p$ is a disjunctive formula in ϕ and for all positions r with $p < r < pq$ the formula $\phi|_r$ is not a conjunctive formula.

A formula $\phi|_p$ is conjunctive in ϕ if $\phi|_p$ is a conjunction and $\text{pol}(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a disjunction or implication and $\text{pol}(\phi, p) \in \{0, -1\}$.

Analogously, a formula $\phi|_p$ is disjunctive in ϕ if $\phi|_p$ is a disjunction or implication and $\text{pol}(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a conjunction and $\text{pol}(\phi, p) \in \{0, -1\}$.
Polarity Dependent Equivalence Elimination

ElimEquiv1 \[\chi[(\phi \leftrightarrow \psi)]_p \Rightarrow_{\text{ACNF}} \chi[(\phi \to \psi) \land (\psi \to \phi)]_p \]
provided \(\text{pol}(\chi, p) \in \{0, 1\} \)

ElimEquiv2 \[\chi[(\phi \leftrightarrow \psi)]_p \Rightarrow_{\text{ACNF}} \chi[(\phi \land \psi) \lor (\neg \phi \land \neg \psi)]_p \]
provided \(\text{pol}(\chi, p) = -1 \)
Extra \top, \bot Elimination Rules

\begin{align*}
\text{ElimTB7} & \quad \chi[\phi \rightarrow \bot]_p \Rightarrow \text{ACNF} \quad \chi[\neg \phi]_p \\
\text{ElimTB8} & \quad \chi[\bot \rightarrow \phi]_p \Rightarrow \text{ACNF} \quad \chi[\top]_p \\
\text{ElimTB9} & \quad \chi[\phi \rightarrow \top]_p \Rightarrow \text{ACNF} \quad \chi[\top]_p \\
\text{ElimTB10} & \quad \chi[\top \rightarrow \phi]_p \Rightarrow \text{ACNF} \quad \chi[\phi]_p \\
\text{ElimTB11} & \quad \chi[\phi \leftrightarrow \bot]_p \Rightarrow \text{ACNF} \quad \chi[\neg \phi]_p \\
\text{ElimTB12} & \quad \chi[\phi \leftrightarrow \top]_p \Rightarrow \text{ACNF} \quad \chi[\phi]_p
\end{align*}

where the two rules ElimTB11, ElimTB12 for equivalences are applied with respect to commutativity of \leftrightarrow.
Advanced CNF Algorithm

1. **Algorithm:** $acnf(\phi)$

 Input: A formula ϕ.

 Output: A formula ψ in CNF satisfiability preserving to ϕ.

2. while rule $(ElimTB1(\phi), \ldots, ElimTB12(\phi))$ do ;
3. SimpleRenaming(ϕ) on obvious positions;
4. while rule $(ElimEquiv1(\phi), ElimEquiv2(\phi))$ do ;
5. while rule $(ElimImp(\phi))$ do ;
6. while rule $(PushNeg1(\phi), \ldots, PushNeg3(\phi))$ do ;
7. while rule $(PushDisj(\phi))$ do ;
8. return ϕ ;
Propositional Resolution

The propositional resolution calculus operates on a set of clauses and tests unsatisfiability.

Recall that for clauses I switch between the notation as a disjunction, e.g., $P \lor Q \lor P \lor \neg R$, and the multiset notation, e.g., \{P, Q, P, \neg R\}. This makes no difference as we consider \lor in the context of clauses always modulo AC. Note that \bot, the empty disjunction, corresponds to \emptyset, the empty multiset. Clauses are typically denoted by letters C, D, possibly with subscript.
Resolution Inference Rules

Resolution \((N \cup \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow_{\text{RES}} (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\}) \)

Factoring \((N \cup \{C \lor L \lor L\}) \Rightarrow_{\text{RES}} (N \cup \{C \lor L \lor L\} \cup \{C \lor L\}) \)
2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete:

\(N \) is unsatisfiable iff \(N \Rightarrow^{*}_{\text{RES}} N' \) and \(\bot \in N' \) for some \(N' \)
Resolution Reduction Rules

Subsumption

\[(N \cup \{C_1, C_2\}) \Rightarrow_{\text{RES}} (N \cup \{C_1\}) \]

provided \(C_1 \subset C_2 \)

Tautology Deletion

\[(N \cup \{C \lor P \lor \neg P\}) \Rightarrow_{\text{RES}} (N) \]

Condensation

\[(N \cup \{C_1 \lor L \lor L\}) \Rightarrow_{\text{RES}} (N \cup \{C_1 \lor L\}) \]

Subsumption Resolution

\[(N \cup \{C_1 \lor L, C_2 \lor \text{comp}(L)\}) \Rightarrow_{\text{RES}} (N \cup \{C_1 \lor L, C_2\}) \]

where \(C_1 \subseteq C_2 \)
2.6.6 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no inference rule is applied twice to the same clause(s), then \Rightarrow^+_RES is well-founded.
The Overall Picture

<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>System + Problem</td>
</tr>
<tr>
<td>System</td>
</tr>
<tr>
<td>Algorithm + Implementation</td>
</tr>
<tr>
<td>Algorithm</td>
</tr>
<tr>
<td>Calculus + Strategy</td>
</tr>
<tr>
<td>Calculus</td>
</tr>
<tr>
<td>Logic + States + Rules</td>
</tr>
<tr>
<td>Logic</td>
</tr>
<tr>
<td>Syntax + Semantics</td>
</tr>
</tbody>
</table>