
3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT191

3.16.4 SCL Clause Learning from Simple Models

The SCL calculus is similar to the NRCL calculus but more fine-grained. Instead
of starting with all constants, it starts only with a finite subset of constants B
that can be used for building models and driving reasoning. The SCL calculus
can be extended to a calculus considering theories, see Section ??.

The signature considered for the BS fragment is Σ = (S,Ω,Π) where the
finite set Ω only consists of constant symbols and for the set B considered by
the calculus we require B ⊆ Ω. A state is a five tuple (M ;N ;U ;B; k;C) where
M is a trail of ground literals, N the set of input clauses, U the set of learned
clauses, B a non-empty set of constants, k the current decision level and C a

192 CHAPTER 3. FIRST-ORDER LOGIC

clause that is > in case of searching for a model, ⊥ in case a refutation has been
found and different from >, ⊥ if C is a non-empty clause that is false in M .

Propagate (M ;N ;U ;B; k;>) ⇒SCL (M,Lσ(C0∨L)δ·σ;N ;U ;B; k;>)

provided C ∈ (N∪U), σ is grounding for C, C = C0∨C1∨L, C1σ = Lσ∨. . .∨Lσ,
C0σ does not contain Lσ, δ is the mgu of the literals in C1 and L, M |= ¬(C0σ),
codom(σ) ⊆ B, and Lσ is undefined in M

The rule Propagate applies exhaustive factoring to the propagated literal
with respect to the grounding substitution σ and annotates the factored clause
to the propagation.

Decide (M ;N ;U ;B; k;>) ⇒SCL (M,Lσk+1;N ;U ;B; k + 1;>)

provided Lσ is undefined in M , |Lσ| ∈ atoms(grd((S, B,Π), N ∪ U)), and
codom(σ) ⊆ B

The number of potential trails of a run is finite because the rules Propagate
and Decide make sure that only undefined literals over a fixed finite sequence
B of constants are added to the trail.

Conflict (M ;N ;U ;B; k;>) ⇒SCL (M ;N ;U ;B; k;D · σ)

provided D ∈ (N ∪U), σ is grounding for D, M |= ¬(Dσ), and codom(σ) ⊆ B

Resolve (M,LρC∨L·ρ;N ;U ;B; k; (D∨L′)·σ) ⇒SCL (M,LρC∨L·ρ;N ;U ;B; k; (D∨
C)η · σρ)

provided Lρ = comp(L′σ), and η = mgu(L, comp(L′))

Note that Resolve does not remove the literal Lρ from the trail. This is
needed if the clause Dσ contains further literals complementary of Lρ that have
not been factorized.

Factorize (M ;N ;U ;B; k; (D∨L∨L′) ·σ) ⇒SCL (M ;N ;U ;B; k; (D∨L)η ·σ)

provided Lσ = L′σ, and η = mgu(L,L′)

Note that Factorize is not limited with respect to the trail. It may apply to
any two literals that become identical by application of the grounding substitu-
tion σ.

Skip (M,L;N ;U ;B; k;D · σ) ⇒SCL (M ;N ;U ;B; l;D · σ)

provided comp(L) does not occur in Dσ, if L is a decision literal then l = k− 1,
otherwise l = k

Note that Skip can also skip decision literals. This is needed because I don’t
eventually require exhaustive propagation. While exhaustive propagation in

3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT193

CDCL is limited to the number of propositional variables, in the context BS
it is already in the size of the input clause set.

Backtrack (M,Ki+1,M ′;N ;U ;B; k; (D∨L)·σ) ⇒SCL (M,Lσ(D∨L)·σ;N ;U∪
{D ∨ L};B; i;>)

provided Lσ is of level k, and Dσ is of level i

The definition of Backtrack requires that Lσ is the only literal of level k in
(D ∨ L)σ. Additional occurrences of Lσ in D have to be factorized first before
Backtrack can be applied.

Grow (M ;N ;U ;B; k;>) ⇒SCL (ε;N ;U ;B ∪B′; 0;>)

provided B′ ⊂ Ω is a non-empty sequence of constants of distinct from the
constants in B

Example 3.16.5 (Comparing Proof Length Depending on Unit Clause Propa-
gation). Proofs generated without full propagation can be exponentially shorter
than proofs generated by exhaustive propagation. Consider the simple BS clause
set over constants Ω = {a, b}

N = {R(x1, . . . , xn, a, b), P ∨Q,P ∨ ¬Q,¬P ∨Q,¬P ∨ ¬Q}

A run without exhaustive propagation can ignore generating the 2n different
ground instances of R(x1, . . . , xn, a, b) starting with initial set B = {a, b}. In-
stead it refutes the propositional part of N in the usual CDCL style by starting
with a decision on P or Q. For the example it is obvious that the instances of
R(x1, . . . , xn, a, b) can be ignored, but in general it is not.

Consider another example, taken from [?], where exhaustive propagation
leads to exponentially longer proofs compared to the shortest resolution proof.

Example 3.16.6 (Comparing Proof Length Depending on Clause Propaga-
tion). Let i be a positive integer and consider the clause set N i with one predi-
cate P of arity i consisting of the following clauses, where we write x̄, 0̄ and 1̄ to
denote sequences of the appropriate length of variables and constants to meet
the arity of P :

P (0̄) ¬P (1̄)

and i clauses of the form ¬P (x̄, 0, 1̄) ∨ P (x̄, 1, 0̄)
where the length of 1̄ varies between 0 and i− 1. The example encodes an i-bit
counter. An SCL run with exhaustive propagation on this clause set finds a
conflict after O(2i) propagations without any application of Decide.

For the instance i = 4 we get the clauses of N4:

N4 = {

1 : P (0, 0, 0, 0)
2 : ¬P (x1, x2, x3, 0) ∨ P (x1, x2, x3, 1)
3 : ¬P (x1, x2, 0, 1) ∨ P (x1, x2, 1, 0)
4 : ¬P (x1, 0, 1, 1) ∨ P (x1, 1, 0, 0)
5 : ¬P (0, 1, 1, 1) ∨ P (1, 0, 0, 0)
6 : ¬P (1, 1, 1, 1)

}

194 CHAPTER 3. FIRST-ORDER LOGIC

For this clause set an SCL all unit clauses from P (0, 0, 0, 0) to P (1, 1, 1, 1)
via 24 applications of Propagate, then finds a conflict with clause 6 and then
uses 24 times Resolve to end up in ⊥.

Instead a short resolution refutation can be obtained by

2.2 Res 3.1 7 : ¬P (x1, x2, 0, 0) ∨ P (x1, x2, 1, 0)
7.2 Res 2.1 8 : ¬P (x1, x2, 0, 0) ∨ P (x1, x2, 1, 1)
8.2 Res 4.1 9 : ¬P (x1, 0, 0, 0) ∨ P (x1, 1, 0, 0)
9.2 Res 8.1 10 : ¬P (x1, 0, 0, 0) ∨ P (x1, 1, 1, 1)
10.2 Res 5.1 11 : ¬P (0, 0, 0, 0) ∨ P (1, 0, 0, 0)
11.2 Res 10.1 12 : ¬P (0, 0, 0, 0) ∨ P (1, 1, 1, 1)
12.1 Res 6.1 13 : ⊥

In general, O(2i) many resolution steps are sufficient to refute N i. This
derivation can be simulated by SCL if exhaustive propagation is not used. For
example, the first resolution step between clauses 2.2 and 3.1 can be simulated
by first deciding P (1, 1, 0, 0) and ¬P (1, 1, 1, 0) yielding the state

([P (1, 1, 0, 0)1,¬P (1, 1, 1, 0)2];N ; ∅; {0, 1}; 2;>)

now we can propagate using ¬P (1, 1, 1, 0)2 with clause 3

([P (1, 1, 0, 0)1,¬P (1, 1, 1, 0)2,¬P (1, 1, 0, 1)¬P (x1,x2,0,1)∨P (x1,x2,1,0)·{x1 7→1,x2 7→1}];N ; ∅; {0, 1}; 2;>)

and then get a conflict with clause 2 by closure (¬P (x1, x2, x3, 0) ∨
P (x1, x2, x3, 1)) · {x1 7→ 1, x2 7→ 1, x3 7→ 0}. Next we apply Conflict and Resolve
to the rightmost propagated literal and get

([P (1, 1, 0, 0)1,¬P (1, 1, 1, 0)2];N ; ∅; {0, 1}; 2; (¬P (x1, x2, 0, 0)∨P (x1, x2, 1, 0))·{x1 7→ 1, x2 7→ 1}).

Finally Backtrack is applicable resulting in

([P (1, 1, 0, 0)1, P (1, 1, 1, 0)(¬P (x1,x2,0,0)∨P (x1,x2,1,0))·{x1 7→1,x2 7→1}];N ; {¬P (x1, x2, 0, 0)∨P (x1, x2, 1, 0)}; {0, 1}; 1;>).

However, to continue with the proof we need also need a Restart rule, which
is anyway needed for completeness to get out of stuck states.

Definition 3.16.7 (Rule Types). The rules Propagate, Decide, Grow, and Con-
flict are called conflict search rules and the rules Resolve, Skip, Factorize, and
Backtrack are called conflict resolution rules.

Definition 3.16.8 (Well-formed States). A state (M ;N ;U ;B; k;D) is well-
formed if the following conditions hold:

1. all constants appearing in (M ;N ;U ;B; k;D) are from B or occur in N .

2. M is satisfiable

3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT195

3. N |= U ,

4. Propagating clauses remain propagating and conflict clauses remain false:

(a) if D = C · σ then Cσ is false in M ,

(b) if M = M1, Lσ
(C∨L)·σ,M2 then Cσ is false in M1, and Lσ is unde-

fined in M1.

Lemma 3.16.9 (Rules preserve Well-Formed States). The rules of SCL preserve
well-formed states.

Definition 3.16.10 (Stuck State). A state (M ;N ;U ;B; k;D) is called stuck if
D 6= ⊥ and none of the rules Propagate, Decide, Conflict, Resolve, Factorize,
Skip, or Backtrack is applicable.

Proposition 3.16.11 (Form of Stuck States). If a run (without rule Grow)
where Conflict was applied eagerly ends in a stuck state (M ;N ;U ;B; k;D),
then D = > and all ground literals that can be build from the literals in N by
instantiation with constants from B are defined in M .

Proof. First we prove that stuck states never appear during conflict resolution.
Consider a well-formed state (M ;N ;U ;B; k;D · δ), we prove by case analysis
that either Skip, Resolve, Factorize or Backtrack can be applied. If M = M ′, Lσ
and Lσ is a literal such that comp(Lσ) is not contained in Dδ then Skip
can be applied. If M = M ′, LσC·σ with Dδ = D′ ∨ comp(Lσ) then Resolve
can be applied. If M = M ′, Lσk,M ′′ and D′ contains multiple occurrences of
comp(Lσ) then Factorize can be applied. In summary, we can reach a state
with a unique literal Lδ of level k in Dδ. Then Backtrack is applicable. Fi-
nally, if in some state (M ;N ;U ;B; k;>) where Conflict is not applicable, some
atom |L| ∈ atoms(grd((S, B,Π), (N ∪ U))) is undefined, we can always apply
Decide.

Lemma 3.16.12 (Stuck States Produce Ground Models). Every stuck state
(M ;N ;U ;B; k;>) produces a ground model, i.e., M |= grd((S, B,Π), (N∪U))).

Proof. By contradiction. Consider any clause Cσ ∈ grd((S, B,Π), (N ∪ U)). It
can only be not true if M |= ¬(Cσ), because all literals are defined Proposi-
tion 3.16.11. But then Conflict would be applicable, a contradiction.

Lemma 3.16.13 (Soundness). If a derivation reaches the state (M ;N ;U ;B; k;⊥),
then N is unsatisfiable.

Definition 3.16.14 (Reasonable Run). A sequence of SCL rule applications
is called a reasonable run if an application of rule Decide does not enable an
application of rule Conflict.

Proposition 3.16.15 (Avoiding Conflicts after Decide). Let N be a set of
clauses and (M ;N ;U ;B; k;>) be a state derived from (ε;N ; ∅;B; 0;>). If an
application of rule Decide to (M ;N ;U ;B; k;>) enables an application of rule
Conflict, then Propagate would have been applicable to (M ;N ;U ;B; k;>).

196 CHAPTER 3. FIRST-ORDER LOGIC

Definition 3.16.16 (Regular Run). A sequence of SCL rule applications is
called a regular run if it is a reasonable run, the rule Conflict has precedence
over all other rules, and Resolve resolves away at least the rightmost literal from
the trail.

Proposition 3.16.17 (Stuck States at Regular Runs). Lemma 3.16.12 also
holds for regular runs.

Corollary 3.16.18 (Regular Conflict Resolution). Let N be a set of (BS)
clauses. Then any conflict in an SCL regular run admits a regular conflict reso-
lution if the run starts from state (ε;N ; ∅;B; 0;>).

Proposition 3.16.19 (Decide Creates no Conflict in Regular Runs). Let N
be a set of clauses. Then any application of Decide in an SCL regular run from
starting state (ε;N ; ∅;B; 0;>) does not create a conflict.

Proof. Assume the contrary: then Propagate would have been applicable before
Decide, contradicting with the definition of a regular and hence reasonable run.

Corollary 3.16.20 (Conflicts Admit Regular Conflict Resolution). Let N be
a set of clauses. Then any conflict in an SCL regular run from starting state
(ε;N ; ∅;B; 0;>) admits a regular conflict resolution.

Proof. We need to prove that it is possible to apply Resolve during conflict
resolution. By Proposition 3.16.19 the rightmost foreground literal on the trail
is a propagation literal and by regularity we know that this literal appears in the
conflict clause. So a conflict resolution can start by skipping over the background
literals and then resolving once with the rightmost foreground literal.

Lemma 3.16.21 (Non-Redundant Clause Learning). Let N be a set of
clauses, and let D ∨ L be a clause learned in an SCL regular run such that
(ε;N ; ∅;B; 0;>)⇒∗SCL⇒Backtrack

SCL (M,Lσ(D∨L)·σ;N ;U ∪{D∨L};B; i;>). Then
D ∨L is not redundant with respect to any ordering ≺ induced by the trail M .

Proof. Consider the following fragment of a derivation learning a clause:

⇒Conflict
SCL (M ′′;N ;U ;B; k;C0 · σ0)

⇒{Skip, Factorize, Resolve}∗
SCL (M,Ki+1,M ′;N ;U ;B; k;Cn · σn)

⇒Backtrack
SCL (M,Lσ(D∨L)·σ;N ;U ∪ {D ∨ L};B; i;>).

where Cn = D ∨ L and σ = σn. Let ≺ be any induced by M . We
prove that Cnσ is not redundant with respect to ≺, B, and (N ∪ U). By
soundness of resolution (N ∪ U) |= Cn and Cnσ is false under both M and
M,Ki+1,M ′, Lemma 3.16.8. For a proof by contradiction, assume there is a
N ′ ⊆ grd((S, B,Π), (N ∪ U)�Cnσ such that N ′ |= Cnσ. As Cnσ is false under
M , there is a ground clause C ′ ∈ N ′ with C ′ � Cnσ, and all literals from C ′

are defined in M and false by the definition of ≺.

3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT197

The clause C0σ0 has at least one literal of level k and due to a regular run,
Definition 3.16.16, the rightmost trail literal is resolved away in Cnσ, Corol-
lary 3.16.20. Therefore, the rightmost foreground literal does not appear in C ′,
so by regularity C ′ would have created a conflict at a previous state.

Of course, in a regular run the ordering of literals on the trail will change,
i.e., the ordering underlying Lemma 3.16.21 will change as well. Thus the non-
redundancy property of Lemma 3.16.21 reflects the situation at the time of
creation of the learned clause. A non-redundancy property holding for an over-
all run must be invariant against changes on the ordering. However, the ordering
underlying Lemma 3.16.21 also entails a fixed subset ordering that is invariant
against changes on the overall ordering. This means that our dynamic ordering
entails non-redundancy criteria based on subset relations including forward re-
dundancy. From an implementation perspective, this means that learned clauses
need not to be tested for forward redundancy. Current resolution, or superpo-
sition based provers spent a reasonable portion of their time in testing forward
redundancy of newly generated clauses. In addition, also tests for backward
reduction can be restricted knowing that learned clauses are not redundant.

Lemma 3.16.22 (Termination of SCL). Let N be a set of clauses and B be
a finite set of background constants. Then any regular run with start state
(ε;N ; ∅;B; 0;>) that uses Grow only finitely often terminates.

Proof. Since Grow can only be used a finite number of times we consider as a
start state the state after the final application of Grow and prove termination of
runs that never use Grow. We do so by giving an explicit termination measure
on the SCL states. Given a state (M ;N ;U ;B; k;D) we define a termination
measure µ as µ(M ;N ;U ;B; k;D) = (u, s,m, r, d) ∈ N5 with a lexicographical
combination of > where

• l = | atoms(grd((S, B,Π), (N ∪ U)))|, u = 3l − | grd((S, B,Π), U)|, and
m = |M |,

• in the case D = >:

∗ s = 1 + l −m, d = 0, and r = 0,

• otherwise if D = D′ · δ:

∗ s = 0,

∗ if M = M ′, L with then r is the number of copies of L in D′δ

∗ d is the number of literals in D′

The number of ground atoms l = | atoms(grd((S, B,Π), (N ∪ U)))| is an upper
bound to the length of the trail because the trail is consistent and no literal can
appear more than once on the trail. Similarly, every learned clause has at least
one non-redundant ground instance so | grd((S, B,Π), U)| increases whenever
SCL(T) learns a new clause and 3l is an upper bound to the ground instances of

198 CHAPTER 3. FIRST-ORDER LOGIC

all learned clauses in a regular run. This means that Backtrack strictly decreases
u, Decide, Propagate, and Conflict strictly decrease s without modifying u,
Skip strictly decreases m without modifying u or s, Resolve strictly decreases r
without modifying u, s, or m, and finally Factorize strictly decreases d, possibly
decreases r and does not modify u, s, or m.

Finally, we show that an unsatisfiable clause set can be refuted by SCL with
any regular run if we start with a sufficiently large sequence of constants B and
apply Decide in a fair way. In addition, we need a Restart rule to recover from
a stuck state.

Restart (M ;N ;U ;B; k;>) ⇒SCL (ε;N ;U ;B; 0;>)

Of course, an unrestricted use of rule Restart immediately leads to non-
termination.

Theorem 3.16.23 (Refutational Completeness of SCL). Let N be an unsatisfi-
able clause set. Then any regular SCL run will derive the empty clause provided
(i) Rule Grow and Decide are operated in a fair way, such that all possible trail
prefixes of all considered sets B during the run are eventually explored, and
(ii) Restart is only applied to stuck states.

Proof. If N is unsatisfiable then by compactness of fist-order logic, there exists
a a finite set N ′ = {Λ1 ‖ C1, . . . ,Λn ‖ Cn} of variable renamed copies of clauses
from N and a finite set B ⊆ Ω of constants and a substitution σ, grounding
for N ′ where codom(σ) = B such that

∧
i Ciσ is unsatisfiable. If the SCL rules

are applied in a fair way, then they will in particular produce trails solely con-
sisting of literals from N ′σ. For these trails the states corresponding to these
trails cannot end in a stuck state, because this contradicts the unsatisfiability of∧
i Ciσ. Instead, they all end in a conflict with some clause in N ′σ. In addition,

there are only finitely many such trails, because the number of literals in N ′σ
is finite. Now let µ((M ;N ;U ;B; k;>)) be the multiset of the levels of all states
with trails from N ′σ until a conflict occurs. Each time a state with a trail from
N ′σ results in a conflict, SCL learns a non-redundant clause that propagates
at a strictly smaller level, Lemma 3.16.21. Thus µ((M ;N ;U ;B; k;>)) strictly
decreases after each Backtrack step after a conflict on a trail with atoms from
N ′σ. The clause learnt at level zero is the empty clause.

Condition (i) of the above theorem is quite abstract. It can, e.g., be made
effective by applying rule Grow only after all possible trail prefixes with respect
to the current set B have been explored and to make sure that Decide does not
produce the same stuck state twice.

