
Chapter 2

Propositional Logic

A logic is a formal language with a mathematically precise semantics. A formal
language is rigorously defined by a grammar and there are efficient algorithms
that can decide whether a string of characters belongs to the language or not.
The semantics is typically a notion of truth based on the notion of an abstract
model. Propositional logic is concerned with the logic of propositions. In propo-
sitional logic from the propositions “Socrates is a man” and “If Socrates is a
man then Socrates is mortal” the conclusion “Socrates is mortal” can be de-
rived. The logic is expressive enough to talk about propositions, but not, e.g.,
about individuals. This will be possible in first-order logic (Chapter 3), a proper
extension of propositional logic.

Nevertheless, propositional logic is an interesting candidate for many appli-
cations. For example, our overall computer technology is based on propositions,
i.e., bits that can either become true or false. The representation of numbers
on a computer is based on fixed length bit-vectors rather than on the abstract
concept of an arbitrarily large number as known from math. Hardware is de-
signed on a “logical level” that meets to a large extend propositional logic and
is, therefore, the currently most well-known application of propositional logic
reasoning in computer science.

2.1 Syntax

Consider a finite, non-empty signature Σ of propositional variables, the “alpha-
bet” of propositional logic. In addition to the alphabet “propositional connec-
tives” are further building blocks composing the sentences (formulas) of the
language. Auxiliary symbols such as parentheses enable disambiguation.

Definition 2.1.1 (Propositional Formula). The set PROP(Σ) of propositional
formulas over a signature Σ is inductively defined by:

27

28 CHAPTER 2. PROPOSITIONAL LOGIC

PROP(Σ) Comment
⊥ connective ⊥ denotes “false”
> connective > denotes “true”
P for any propositional variable P ∈ Σ

(¬φ) connective ¬ denotes “negation”
(φ ∧ ψ) connective ∧ denotes “conjunction”
(φ ∨ ψ) connective ∨ denotes “disjunction”
(φ→ ψ) connective → denotes “implication”
(φ↔ ψ) connective ↔ denotes “equivalence”

where φ, ψ ∈ PROP(Σ).

The above definition is an abbreviation for setting PROP(Σ) to be the
language of a context free grammar PROP(Σ) = L((N,T, P, S)) (see Defini-
tion 1.3.9) where N = {φ, ψ}, T = Σ ∪ {(,)} ∪ {⊥,>,¬,∧,∨,→,↔} with start
symbol rules S ⇒ φ | ψ, φ⇒ ⊥ | > | (¬φ) | (φ∧ψ) | (φ∨ψ) | (φ→ ψ) | (φ↔ ψ),
ψ ⇒ φ, and φ⇒ P , for every P ∈ Σ.

As a notational convention we assume that ¬ binds strongest and we omit
outermost parenthesis. So ¬P ∨ Q is actually a shorthand for ((¬P) ∨ Q). For
all other logical connectives parenthesis are explicitly shown if needed. The
connectives ∧ and ∨ are actually associative and commutative, see the next
Section 2.2. Therefore, the formula ((P ∧ Q) ∧ R) can be written P ∧ Q ∧ R
without causing confusion.

I

The connectives ∧ and ∨ are introduced as binary connectives. They
are associative and commutative as already mentioned above. When
implementing formulas both connectives are typically considered to

be of variable arity. This saves both space and enables more efficient algorithms
for formula manipulation.

Definition 2.1.2 (Atom, Literal, Clause). A propositional variable P is called
an atom. It is also called a (positive) literal and its negation ¬P is called a
(negative) literal. The functions comp and atom map a literal to its complement,
or atom, respectively: if comp(¬P) = P and comp(P) = ¬P , atom(¬P) = P
and atom(P) = P for all P ∈ Σ. Literals are denoted by letters L,K. Two literals
P and ¬P are called complementary. A disjunction of literals L1 ∨ . . . ∨ Ln is
called a clause. A clause is identified with the multiset of its literals.

The length of a clause C, i.e., the number of literals, is denoted by |C|
according to the cardinality of its multiset interpretation. A clause is called
Horn if it contains at most one positive literal.

Automated reasoning is very much formula manipulation. In order to pre-
cisely represent the manipulation of a formula, we introduce positions.

Definition 2.1.3 (Position). A position is a word over N. The set of positions
of a formula φ is inductively defined by

pos(φ) := {ε} if φ ∈ {>,⊥} or φ ∈ Σ
pos(¬φ) := {ε} ∪ {1p | p ∈ pos(φ)}

pos(φ ◦ ψ) := {ε} ∪ {1p | p ∈ pos(φ)} ∪ {2p | p ∈ pos(ψ)}

2.2. SEMANTICS 29

where ◦ ∈ {∧,∨,→,↔}.

The prefix order ≤ on positions is defined by p ≤ q if there is some p′ such
that pp′ = q. Note that the prefix order is partial, e.g., the positions 12 and 21
are not comparable, they are “parallel”, see below. The relation < is the strict
part of ≤, i.e., p < q if p ≤ q but not q ≤ p. The relation ‖ denotes incomparable,
also called parallel positions, i.e., p ‖ q if neither p ≤ q, nor q ≤ p. A position p
is above q if p ≤ q, p is strictly above q if p < q, and p and q are parallel if p ‖ q.

The size of a formula φ is given by the cardinality of pos(φ): |φ| := |pos(φ)|.
The subformula of φ at position p ∈ pos(φ) is inductively defined by φ|ε := φ,
¬φ|1p := φ|p, and (φ1 ◦ φ2)|ip := φi|p where i ∈ {1, 2}, ◦ ∈ {∧,∨,→,↔}.
Finally, the replacement of a subformula at position p ∈ pos(φ) by a formula ψ
is inductively defined by φ[ψ]ε := ψ, (¬φ)[ψ]1p := ¬φ[ψ]p, and (φ1 ◦ φ2)[ψ]1p :=
(φ1[ψ]p ◦ φ2), (φ1 ◦ φ2)[ψ]2p := (φ1 ◦ φ2[ψ]p), where ◦ ∈ {∧,∨,→,↔}.

Example 2.1.4. The set of positions for the formula φ = (P ∧Q) → (P ∨Q)
is pos(φ) = {ε, 1, 11, 12, 2, 21, 22}. The subformula at position 22 is Q, φ|22 = Q
and replacing this formula by P ↔ Q results in φ[P ↔ Q]22 = (P ∧ Q) →
(P ∨ (P ↔ Q)).

A further prerequisite for efficient formula manipulation is the notion of the
polarity of the subformula φ|p of φ at position p. The polarity considers the
number of “negations” starting from φ at position ε down to p. It is 1 for an
even number of explicit or implicit negation symbols along the path, −1 for an
odd number and 0 if there is at least one equivalence connective along the path.

Definition 2.1.5 (Polarity). The polarity of the subformula φ|p of φ at position
p ∈ pos(φ) is inductively defined by

pol(φ, ε) := 1
pol(¬φ, 1p) := −pol(φ, p)

pol(φ1 ◦ φ2, ip) := pol(φi, p) if ◦ ∈ {∧,∨}, i ∈ {1, 2}
pol(φ1 → φ2, 1p) := −pol(φ1, p)
pol(φ1 → φ2, 2p) := pol(φ2, p)
pol(φ1 ↔ φ2, ip) := 0 if i ∈ {1, 2}

Example 2.1.6. Reconsider the formula φ = (A ∧ B) → (A ∨ B) of Exam-
ple 2.1.4. Then pol(φ, 1) = pol(φ, 11) = −1 and pol(φ, 2) = pol(φ, 22) = 1. For
the formula φ′ = (A∧B)↔ (A∨B) we get pol(φ′, ε) = 1 and pol(φ′, p) = 0 for
all other p ∈ pos(φ′), p 6= ε.

2.2 Semantics

In classical logic there are two truth values “true” and “false” which we shall
denote, respectively, by 1 and 0. There are many-valued logics [63] having more
than two truth values and in fact, as we will see later on, for the definition of

30 CHAPTER 2. PROPOSITIONAL LOGIC

some propositional logic calculi, we will need an implicit third truth value called
“undefined”.

Definition 2.2.1 ((Partial) Valuation). A Σ-valuation is a map

A : Σ→ {0, 1}.

where {0, 1} is the set of truth values. A partial Σ-valuation is a map A′ : Σ′ →
{0, 1} where Σ′ ⊆ Σ.

Definition 2.2.2 (Semantics). A Σ-valuation A is inductively extended from
propositional variables to propositional formulas φ, ψ ∈ PROP(Σ) by

A(⊥) := 0
A(>) := 1
A(¬φ) := 1−A(φ)

A(φ ∧ ψ) := min({A(φ),A(ψ)})
A(φ ∨ ψ) := max({A(φ),A(ψ)})
A(φ→ ψ) := max({1−A(φ), A(ψ)})
A(φ↔ ψ) := if A(φ) = A(ψ) then 1 else 0

If A(φ) = 1 for some Σ-valuation A of a formula φ then φ is satisfiable and we
write A |= φ. In this case A is a model of φ. If A(φ) = 1 for all Σ-valuations A
of a formula φ then φ is valid and we write |= φ. If there is no Σ-valuation A
for a formula φ where A(φ) = 1 we say φ is unsatisfiable. A formula φ entails
ψ, written φ |= ψ, if for all Σ-valuations A whenever A |= φ then A |= ψ. Two
formulas φ and ψ are called equisatisfiable, if φ is satisfiable iff ψ is satisfiable
(not necessarily in the same models).

Accordingly, a formula φ is satisfiable, valid, unsatisfiable, respectively, with
respect to a partial valuation A′ with domain Σ′, if for all valuations A with
A(P) = A′(P) for all P ∈ Σ′, the formula φ is satisfiable, valid, unsatisfiable,
respectively, with respect to a A.

I call the fact that some formula φ is satisfiable, unsatisfiable, or valid, the
status of φ. Note that if φ is valid it is also satisfiable, but not the other way
round.

Valuations of propositional logic collapse with interpretations. Given a for-
mula φ and an interpretation (valuation) A such that A(φ) = 1 then the inter-
pretation A is also called a model for φ.

Valuations can be nicely represented by sets or sequences of literals that do
not contain complementary literals nor duplicates. If A is a (partial) valuation
of domain Σ then it can be represented by the set {P | P ∈ Σ and A(P) = 1}∪
{¬P | P ∈ Σ and A(P) = 0}. Another, equivalent representation are Herbrand
interpretations that are sets of positive literals, where all atoms not contained
in an Herbrand interpretation are false. If A is a total valuation of domain Σ
then it corresponds to the Herbrand interpretation {P | P ∈ Σ and A(P) = 1}.

2.2. SEMANTICS 31

TPlease note the subtle difference between an Herbrand interpretation
and a valuation represented by a set of literals. The latter can be
partial with respect to a formula whereas the former is always total by definition.
For example, the empty Herbrand interpretation assigns false to all propositional
variables.

For example, for the valuation A = {P,¬Q} the truth value of P ∨ Q is
A(P ∨Q) = 1, for P ∨R it is A(P ∨R) = 1, for ¬P ∧R it is A(¬P ∧R) = 0, and
the status of ¬P ∨ R cannot be established by A. In particular, A is a partial
valuation for Σ = {P,Q,R}. A literal L is defined with respect to a partial
valuation A if L ∈ A or comp(L) ∈ A.

Example 2.2.3. The formula φ ∨ ¬φ is valid, independently of φ. According
to Definition 2.2.2 we need to prove that for all Σ-valuations A of φ we have
A(φ ∨ ¬φ) = 1. So let A be an arbitrary valuation. There are two cases to
consider. If A(φ) = 1 then A(φ ∨ ¬φ) = 1 because the valuation function takes
the maximum if distributed over ∨. If A(φ) = 0 then A(¬φ) = 1 and again by
the before argument A(φ ∨ ¬φ) = 1. This finishes the proof that |= φ ∨ ¬φ.

Theorem 2.2.4 (Deduction Theorem). φ |= ψ iff |= φ→ ψ

Proof. (⇒) Suppose that φ entails ψ and let A be an arbitrary Σ-valuation.
We need to show A |= φ → ψ. If A(φ) = 1, then A(ψ) = 1, because φ entails
ψ, and therefore A |= φ → ψ. For otherwise, if A(φ) = 0, then A(φ → ψ) =
max({(1−A(φ)),A(ψ)}) = max({(1,A(ψ)}) = 1, independently of the value of
A(ψ). In both cases A |= φ→ ψ.
(⇐) By contraposition. Suppose that φ does not entail ψ. Then there exists
a Σ-valuation A such that A |= φ, A(φ) = 1 but A 6|= ψ, i.e., A(ψ) = 0. By
definition, A(φ → ψ) = max({(1 − A(φ)),A(ψ)}) = max({(1 − 1), 0}) = 0,
hence φ→ ψ does not hold in A.

So both writings φ |= ψ and |= φ → ψ are actually equivalent. I extend
the former notion to sets or sequences on the left denoting conjunction. For
example, χ, φ |= ψ is short for χ ∧ φ |= ψ.

Proposition 2.2.5. The equivalences of Figure 2.1 are valid for all formulas
φ, ψ, χ.

T

Note that the formulas φ ∧ ψ and ψ ∧ φ are equivalent. Nevertheless,
recalling the problem state definition for Sudokus in Section 1.1 the
two states (N ; f(2, 3) = 1 ∧ f(2, 4) = 4;>) and (N ; f(2, 4) = 4 ∧
f(2, 3) = 1;>) are significantly different. For example, it can be that the first
state can lead to a solution by the rules of the algorithm where the latter
cannot, because the latter implicitly means that the square (2, 4) has already
been checked for all values smaller than 4. This reveals the important point
that arguing by logical equivalence in the context of a rule set manipulating
formulas, a calculus, can lead to wrong results.

32 CHAPTER 2. PROPOSITIONAL LOGIC

Lemma 2.2.6 (Formula Replacement). Let φ be a propositional formula con-
taining a subformula ψ at position p, i.e., φ|p = ψ. Furthermore, assume
|= ψ ↔ χ. Then |= φ↔ φ[χ]p.

Proof. By induction on |p| and structural induction on φ. For the base step let
p = ε and A be an arbitrary valuation.

A(φ) = A(ψ) (by definition of position)
= A(χ) (because A |= ψ ↔ χ)
= A(φ[χ]ε) (by definition of replacement)

For the induction step the lemma holds for all positions p and has to be
shown for all positions ip. By structural induction on φ, I show the cases where
φ = ¬φ1 and φ = φ1 → φ2 in detail. All other cases are analogous.

If φ = ¬φ1 then showing the lemma amounts to proving |= ¬φ1 ↔ ¬φ1[χ]1p.
Let A be an arbitrary valuation.

A(¬φ1) = 1−A(φ1) (expanding semantics)
= 1−A(φ1[χ]p) (by induction hypothesis)
= A(¬φ[χ]1p) (contracting semantics)

If φ = φ1 → φ2 then showing the lemma amounts to proving the two cases
|= (φ1 → φ2) ↔ (φ1 → φ2)[χ]1p and |= (φ1 → φ2) ↔ (φ1 → φ2)[χ]2p. Both
cases are similar so I show only the first case. Let A be an arbitrary valuation.

A(φ1 → φ2) = max({(1−A(φ1)),A(φ2)}) (expanding semantics)
= max({(1−A(φ1[χ]p)),A(φ2)}) (by induction hypothesis)
= A((φ1 → φ2)[χ]1p) (applying semantics)

Lemma 2.2.7 (Polarity Dependent Replacement). Consider a formula φ, po-
sition p ∈ pos(φ), pol(φ, p) = 1 and (partial) valuation A with A(φ) = 1. If for
some formula ψ, A(ψ) = 1 then A(φ[ψ]p) = 1. Symmetrically, if pol(φ, p) = −1
and A(ψ) = 0 then A(φ[ψ]p) = 1. If pol(φ, p) = 1 and A(ψ) = 1 then
A(φ) = A(φ[ψ]p).

Proof. Exercise ??: by induction on the length of p.

Note that the case for the above lemma where pol(φ, p) = 0 is actually
Lemma 2.2.6.

C

The equivalences of Figure 2.1 show that the propositional language
introduced in Definition 2.1.1 is redundant in the sense that certain
connectives can be expressed by others. For example, the equivalence

Eliminate→ expresses implication by means of disjunction and negation. So for
any propositional formula φ there exists an equivalent formula φ′ such that φ′

does not contain the implication connective. In order to prove this proposition
the above replacement lemma is key.

34 CHAPTER 2. PROPOSITIONAL LOGIC

commutative, they are equivalent. One or two columns in the truth table for the
two subformulas? Again, saving a column is beneficial but in general, detecting
equivalence of two subformulas may become as difficult as checking whether the
overall formula is valid. A compromise, often performed in practice, are normal
forms that guarantee that certain occurrences of equivalent subformulas can be
found in polynomial time. For the running example, we can simply assume some
ordering on the propositional variables and assume that for a disjunction of two
propositional variables, the smaller variable always comes first. So if P < Q
then the normal form of P ∨Q and Q ∨ P is in fact P ∨Q.

C

In practice, nobody uses truth tables as a reasoning procedure. Worst
case, computing a truth table for checking the status of a formula φ
requires O(2n) steps, where n is the number of different propositional

variables in φ. But this is actually not the reason why the procedure is imprac-
tical, because the worst case behavior of all other procedures for propositional
logic known today is also of exponential complexity. So why are truth tables
not a good procedure? The answer is: because they do not adapt to the inher-
ent structure of a formula. The reasoning mechanism of a truth table for two
formulas φ and ψ sharing the same propositional variables is exactly the same:
we enumerate all valuations. However, if φ is, e.g., of the form φ = P ∧ φ′ and
we are interested in the satisfiability of φ, then φ can only become true for a
valuation A with A(P) = 1. Hence, 2n−1 rows of φ’s truth table are superflu-
ous. All procedures I will introduce in the sequel, automatically detect this (and
further) specific structures of a formula and use it to speed up the reasoning
process.

2.4 Propositional Tableaux

Like resolution, semantic tableaux were developed in the sixties, independently
by Lis [44] and Smullyan [61] on the basis of work by Gentzen in the 30s [31] and
of Beth [11] in the 50s. For an at that time state of the art overview consider
Fitting’s book [29].

In contrast to the calculi introduced in subsequent sections, semantic tableau
does not rely on a normal form of input formulas but actually applies to any
propositional formula. The formulas are divided into α- and β-formulas, where
intuitively an α formula represents an (implicit) conjunction and a β formula
an (implicit) disjunction.

Definition 2.4.1 (α-, β-Formulas). A formula φ is called an α-formula if φ is
a formula ¬¬φ1, φ1 ∧ φ2, φ1 ↔ φ2, ¬(φ1 ∨ φ2), or ¬(φ1 → φ2). A formula φ is
called a β-formula if φ is a formula φ1∨φ2, φ1 → φ2, ¬(φ1∧φ2), or ¬(φ1 ↔ φ2).

A common property of α-, β-formulas is that they can be decomposed into
direct descendants representing (modulo negation) subformulas of the respective

2.4. PROPOSITIONAL TABLEAUX 35

formulas. Then an α-formula is valid iff all its descendants are valid and a β-
formula is valid iff one of its descendants is valid. Therefore, the literature uses
both the notions semantic tableaux and analytic tableaux.

Definition 2.4.2 (Direct Descendant). Given an α- or β-formula φ, Figure 2.4
shows its direct descendants.

Duplicating φ for the α-descendants of ¬¬φ is a trick for conformity. Any
propositional formula is either an α-formula or a β-formula or a literal.

Proposition 2.4.3. For any valuation A: (i) if φ is an α-formula then A(φ) = 1
iff A(φ1) = 1 and A(φ2) = 1 for its descendants φ1, φ2. (ii) if φ is a β-formula
then A(φ) = 1 iff A(φ1) = 1 or A(φ2) = 1 for its descendants φ1, φ2.

The tableau calculus operates on states that are sets of sequences of for-
mulas. Semantically, the set represents a disjunction of sequences that are in-
terpreted as conjunctions of the respective formulas. A sequence of formulas
(φ1, . . . , φn) is called closed if there are two formulas φi and φj in the sequence
where φi = comp(φj). A state is closed if all its formula sequences are closed. A
state actually represents a tree and this tree is called a tableau in the literature.
So if a state is closed, the respective tree, the tableau is closed too. The tableau
calculus is a calculus showing unsatisfiability of a formula. Such calculi are called
refutational calculi. Later on soundness and completeness of the calculus imply
that a formula φ is valid iff the rules of tableau produce a closed state starting
with N = {(¬φ)}.

A formula φ occurring in some sequence is called open if in case φ is an
α-formula not both direct descendants are already part of the sequence and if
it is a β-formula none of its descendants is part of the sequence.

α-Expansion N]{(φ1, . . . , ψ, . . . , φn)} ⇒T N]{(φ1, . . . , ψ, . . . , φn, ψ1, ψ2)}
provided ψ is an open α-formula, ψ1, ψ2 its direct descendants and the sequence
is not closed.

β-Expansion N]{(φ1, . . . , ψ, . . . , φn)} ⇒T N]{(φ1, . . . , ψ, . . . , φn, ψ1)}]
{(φ1, . . . , ψ, . . . , φn, ψ2)}
provided ψ is an open β-formula, ψ1, ψ2 its direct descendants and the sequence
is not closed.

For example, consider proving validity of the formula (P ∧ ¬(Q ∨ ¬R)) →
(Q ∧R). Applying the tableau rules generates the following derivation:

{(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)])}
α-Expansion⇒∗T {(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)],
P ∧ ¬(Q ∨ ¬R),¬(Q ∧R), P,¬(Q ∨ ¬R),¬Q,¬¬R,R)}

β-Expansion⇒T {(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)],
P ∧ ¬(Q ∨ ¬R),¬(Q ∧R), P,¬(Q ∨ ¬R),¬Q,¬¬R,R,¬Q),
(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)],
P ∧ ¬(Q ∨ ¬R),¬(Q ∧R), P,¬(Q ∨ ¬R),¬Q,¬¬R,R,¬R)}

36 CHAPTER 2. PROPOSITIONAL LOGIC

The state after β-expansion is final, i.e., no more rule can be applied. The first
sequence is not closed, whereas the second sequence is closed because it contains
R and ¬R. Thus, the formula is not valid but satisfiable. A tree representation,
where common formulas of sequences are shared, can be found in Figure 2.5.
This is the traditional way of tableau presentation.

Theorem 2.4.4 (Propositional Tableau is Sound). If for a formula φ the tableau
calculus computes {(¬φ)} ⇒∗T N and N is closed, then φ is valid.

Proof. It is sufficient to show the following: (i) if N is closed then the disjunction
of the conjunction of all sequence formulas is unsatisfiable (ii) the two tableau
rules preserve satisfiability.

Part (i) is obvious: if N is closed all its sequences are closed. A sequence is
closed if it contains a formula and its negation. The conjunction of two such
formulas is unsatisfiable.

Part (ii) is shown by induction on the length of the derivation and then by
a case analysis for the two rules. α-Expansion: for any valuation A if A(ψ) = 1
then A(ψ1) = A(ψ2) = 1. β-Expansion: for any valuation A if A(ψ) = 1 then
A(ψ1) = 1 or A(ψ2) = 1 (see Proposition 2.4.3).

Theorem 2.4.5 (Propositional Tableau Terminates). Starting from a start
state {(φ)} for some formula φ, the relation ⇒+

T is well-founded.

Proof. Take the two-folded multiset extension of the lexicographic extension of
> on the naturals to triples (n, k, l) generated by the a measure µ. It is first
defined on formulas by µ(φ) := (n, k, l) where n is the number of equivalence
symbols in φ, k is the sum of all disjunction, conjunction, implication symbols
in φ and l is |φ|. On sequences (φ1, . . . , φn) the measure is defined to deliver
a multiset by µ((φ1, . . . , φn)) := {t1, . . . , tn} where ti = µ(φi) if φi is open in
the sequence and ti = (0, 0, 0) otherwise. Finally, µ is extended to states N by
computing the multiset µ(N) := {µ(s) | s ∈ N}.

Note, that α-, as well as β-expansion strictly extend sequences. Once a for-
mula is closed in a sequence by applying an expansion rule, it remains closed
forever in the sequence.

An α-expansion on a formula ψ1∧ψ2 on the sequence (φ1, . . . , ψ1∧ψ2, . . . , φn)
results in (φ1, . . . , ψ1 ∧ψ2, . . . , φn, ψ1, ψ2). It needs to be shown µ((φ1, . . . , ψ1 ∧
ψ2, . . . , φn)) >mul µ((φ1, . . . , ψ1 ∧ ψ2, . . . , φn, ψ1, ψ2)). In the second sequence
µ(ψ1 ∧ ψ2) = (0, 0, 0) because the formula is closed. For the triple (n, k, l)
assigned by µ to ψ1 ∧ ψ2 in the first sequence, it holds (n, k, l) >lex µ(ψ1),
(n, k, l) >lex µ(ψ2) and (n, k, l) >lex (0, 0, 0), the former because the ψi are
subformulas and the latter because l 6= 0. This proves the case.

A β-expansion on a formula ψ1∨ψ2 on the sequence (φ1, . . . , ψ1∨ψ2, . . . , φn)
results in (φ1, . . . , ψ1 ∨ψ2, . . . , φn, ψ1), (φ1, . . . , ψ1 ∨ψ2, . . . , φn, ψ2). It needs to
be shown µ((φ1, . . . , ψ1 ∨ψ2, . . . , φn)) >mul µ((φ1, . . . , ψ1 ∨ψ2, . . . , φn, ψ1)) and
µ((φ1, . . . , ψ1∨ψ2, . . . , φn)) >mul µ((φ1, . . . , ψ1∨ψ2, . . . , φn, ψ2)). In the derived
sequences µ(ψ1 ∨ ψ2) = (0, 0, 0) because the formula is closed. For the triple
(n, k, l) assigned by µ to ψ1 ∨ ψ2 in the starting sequence, it holds (n, k, l) >lex

2.4. PROPOSITIONAL TABLEAUX 37

µ(ψ1), (n, k, l) >lex µ(ψ2) and (n, k, l) >lex (0, 0, 0), the former because the ψi
are subformulas and the latter because l 6= 0. This proves the case.

Theorem 2.4.6 (Propositional Tableau is Complete). If φ is valid, tableau
computes a closed state out of {(¬φ)}.

Proof. If φ is valid then ¬φ is unsatisfiable. Now assume after termination the
resulting state and hence at least one sequence is not closed. For this sequence
consider a valuation A consisting of the literals in the sequence. By assumption
there are no opposite literals, so A is well-defined. I prove by contradiction that
A is a model for the sequence. Assume it is not. Then there is a minimal formula
in the sequence, with respect to the ordering on triples considered in the proof
of Theorem 2.4.5, that is not satisfied by A. By definition of A the formula
cannot be a literal. So it is an α-formula or a β-formula. In all cases at least one
descendant formula is contained in the sequence, is smaller than the original
formula, false in A (Proposition 2.4.3) and hence contradicts the assumption.
Therefore, A satisfies the sequence contradicting that ¬φ is unsatisfiable.

Corollary 2.4.7 (Propositional Tableau generates Models). Let φ be a formula,
{(φ)} ⇒∗T N and s ∈ N be a sequence that is not closed and neither α-expansion
nor β-expansion are applicable to s. Then the literals in s form a (partial)
valuation that is a model for φ.

Proof. See Exercise ??.

Consider the example tableau shown in Figure 2.5. The open first branch
corresponds to the valuation A = {P,R,¬Q} which is a model of the formula
¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)].

C

The tableau calculus naturally evolves out of the semantics of the
operators. However, from a proof search and proof length point of
view it has severe deficits. Consider, for example, the abstract tableau
in Figure 2.6. Let’s assume it is closed. Let’s further assume that the closedness
does not depend on the Kj , K

′
j literals. Then there is an exponentially smaller

closed tableau for the formula that consists of picking exactly one of the identical
Li, L

′
i subtrees. The calculus does not “learn” from the fact that closedness does

not depend on the Kj , K
′
j literals. Actually, this can be overcome and one way

of looking at CDCL, Section ??, is to consider it as a solution to the problem
of unnecessary repetitions of already closed branches. Concerning proof length,
there are clause sets where an exponential blow up compared to resolution,
Section 2.6, or CDCL, Section ??, cannot be prevented. For example, on a
clause set where every clause rules out exactly one valuation of n variables,
the shortest resolution proof is exponentially shorter than the shortest tableau
proof. In addition, the resolution proof can be found in a deterministic way by
simplification, see Example 2.6.4. For two variables the respective clause set is
(P ∨Q) ∧ (P ∨ ¬Q) ∧ (¬P ∨Q) ∧ (¬P ∨ ¬Q).

38 CHAPTER 2. PROPOSITIONAL LOGIC

2.5 Normal Forms

In order to check the status of a formula φ via truth tables, the truth table
contains a column for each subformula of φ and all valuations for its variables.
Any shape of φ is fine in order to generate the respective truth table. The
superposition calculus (Section 2.7), The DPLL calculus (Section 2.8), and the
CDCL (Conflict Driven Clause Learning) calculus (Section ??) all operate on
a normal form, i.e., the shape of φ is restricted. All those calculi accept only
conjunctions of disjunctions of literals, a particular normal form. It is called
Clause Normal Form or simply CNF. The purpose of this section is to show
that an arbitrary formula φ can be effectively and efficiently transformed into a
formula in CNF, preserving at least satisfiability. Efficient transformations are
typically not equivalence preserving because they introduce fresh propositional
variables. Superposition, DPLL, and CDCL are all refutational calculi, so a
satisfiability preserving normal form transformation is fine.

2.5.1 Conjunctive and Disjunctive Normal Forms

Both conjunctive and disjunctive normal forms only use the operators ∧ and ∨
on top of literals. So all other operators need to be translated into a combination
of ∧, ∨ and ¬ and eventually negations have to be pushed downwards the formula
in front of atoms. The crucial operator is an equivalence ↔, because a formula
φ ↔ ψ is logically equivalent to the formula (¬φ ∨ ψ) ∧ (¬ψ ∨ φ). However, in
the letter formula the occurrences of φ and ψ have been duplicated. Replacing a
formula of nested ↔ occurrences that way results therefore in an exponentially
larger formula.

A CNF is a conjunction of disjunction of literals, e.g., a formula (P∨ 6=
Q)(P ∨R). A formula containing only the operators ∧, ∨ and literals can always
be transformed into a conjunction of disjunctions via the application of the
distributivity law. For example the formula φ ∨ (ψ1 ∧ ψ2) results in (φ ∨ ψ1) ∧
(φ ∨ ψ2) after pushing this disjunction inside. Again, similar to the effect of
replacing an equivalence, the formula φ is duplicated. Turning a deep nesting
of ∧ operators below ∨ operators may therefore also result in an exponentially
larger formula. A dual property holds for the disjunctive normal form.

In the sequel I’ll define the respective normal forms and present various
calculi and algorithms for normal form transformations. The more sophisticated
algorithms, Algorithm 3, Algorithm 4, transform any formula into a satisfiability
preserving CNF in linear time.

Definition 2.5.1 (CNF, DNF). A formula is in conjunctive normal form (CNF)
or clause normal form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction of
conjunctions of literals.

2.5. NORMAL FORMS 39

TThe definition of the propositional language, Definition 2.1.1, consid-
ers only binary conjunctions and disjunctions,. Both operators are AC
(Associative and Commutative) thus an n-ary usage of the operators as well as a
set notation is compatible with the semantics. Actually, I will use all three nota-
tions, binary operators, n-ary operators as well as set notations interchangeably,
whatever fits best in the respective context.

So a CNF has the form
∧
i

∨
j Lj and a DNF the form

∨
i

∧
j Lj where the Lj

are literals. In the sequel the logical notation with ∨ is overloaded with a multiset
notation. Both the disjunction L1 ∨ . . . ∨ Ln and the multiset {L1, . . . , Ln} are
clauses. For clauses the letters C, D, possibly indexed are used. Furthermore, a
conjunction of clauses is considered as a set of clauses. Then, for a set of clauses,
the empty set denotes >. For a clause, the empty multiset denotes ∅ and at the
same time ⊥.

T

Although CNF and DNF are defined in almost any text book on au-
tomated reasoning, the definitions in the literature differ with respect
to the “border” cases: (i) are complementary literals permitted in a
clause? (ii) are duplicated literals permitted in a clause? (iii) are empty dis-
junctions/conjunctions permitted? The above Definition 2.5.1 answers all three
questions with “yes”. A clause containing complementary literals is valid, as in
P ∨Q∨¬P . Duplicate literals may occur, as in P ∨Q∨P . The empty disjunction
is ⊥ and the empty conjunction >, i.e., the empty disjunction is always false
while the empty conjunction is always true.

Checking the validity of CNF formulas or the unsatisfiability of DNF formu-
las is easy: (i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and ¬P , (ii) conversely, a formula
in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of
complementary literals P and ¬P (see Exercise ??).

C

On the other hand, checking the unsatisfiability of CNF formulas or
the validity of DNF formulas is coNP-complete. For any propositional
formula φ there is an equivalent formula in CNF and DNF and I will
prove this below by actually providing an effective procedure for the transforma-
tion. However, also because of the above comment on validity and satisfiability
checking for CNF and DNF formulas, respectively, the transformation is costly.
In general, a CNF or DNF of a formula φ is exponentially larger than φ as long
as the normal forms need to be logically equivalent. If this is not needed, then
by the introduction of fresh propositional variables, CNF normal forms for φ
can be computed in linear time in the size of φ. More concretely, given a formula
φ instead of checking validity the unsatisfiability of ¬φ can be considered. Then
the linear time CNF normal form algorithm (see Section 2.5.3) is satisfiability
preserving, i.e., the linear time CNF of ¬φ is unsatisfiable iff ¬φ is.

Proposition 2.5.2. For every formula there is an equivalent formula in CNF
and also an equivalent formula in DNF.

Proof. See the rewrite systems⇒BCNF, and⇒ACNF below and the lemmata on
their properties.

40 CHAPTER 2. PROPOSITIONAL LOGIC

2.5.2 Basic CNF/DNF Transformation

The below algorithm bcnf is a basic algorithm for transforming any propositional
formula into CNF, or DNF if the rule PushDisj is replaced by PushConj.

Algorithm 2: bcnf(φ)

Input : A propositional formula φ.
Output: A propositional formula ψ equivalent to φ in CNF.

1 whilerule (ElimEquiv(φ)) do ;
2 whilerule (ElimImp(φ)) do ;
3 whilerule (ElimTB1(φ),. . .,ElimTB6(φ)) do ;
4 whilerule (PushNeg1(φ),. . .,PushNeg3(φ)) do ;
5 whilerule (PushDisj(φ)) do ;
6 return φ;

In the sequel I study only the CNF version of the algorithm. All properties
hold in an analogous way for the DNF version. To start an informal analysis of
the algorithm, consider the following example CNF transformation.

Example 2.5.3. Consider the formula ¬((P ∨Q) ↔ (P → (Q ∧ >))) and the
application of ⇒BCNF depicted in Figure 2.8. Already for this simple formula
the CNF transformation via ⇒BCNF becomes quite messy. Note that the CNF
result in Figure 2.8 is highly redundant. If I remove all disjunctions that are
trivially true, because they contain a propositional literal and its negation, the
result becomes

(P ∨ ¬Q) ∧ (¬Q ∨ ¬P) ∧ (¬Q ∨ ¬Q)
now elimination of duplicate literals beautifies the third clause and the overall
formula into

(P ∨ ¬Q) ∧ (¬Q ∨ ¬P) ∧ ¬Q.
Now let’s inspect this formula a little closer. Any valuation satisfying the formula
must set A(Q) = 0, because of the third clause. But then the first two clauses are
already satisfied. The formula ¬Q subsumes the formulas P ∨¬Q and ¬Q∨¬P
in this sense. The notion of subsumption will be discussed in detail for clauses
in Section 2.6. So it is eventually equivalent to

¬Q.
The correctness of the result is obvious by looking at the original formula and
doing a case analysis. For any valuation A with A(Q) = 1 the two parts of the
equivalence become true, independently of P , so the overall formula is false.
For A(Q) = 0, for any value of P , the truth values of the two sides of the
equivalence are different, so the equivalence becomes false and hence the overall
formula true.

After proving ⇒BCNF correct and terminating, in the succeeding section,
Section 2.5.3, I will present an algorithm ⇒ACNF that actually generates a
much more compact CNF out of ¬((P ∨ Q) ↔ (P → (Q ∧ >))) and does this
without generating the mess of formulas⇒BCNF does, see Figure 2.10. Applying

