4.1.11 Theorem (Birkhoff's Theorem)

Let \mathcal{X} be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_{\mathcal{S}}(\Sigma, \mathcal{X})$:

1.
$$s \leftrightarrow_E^* t$$
.
2. $E \Rightarrow_E^* s \approx t$ is derivable.
3. $s \approx_E t$, i.e., $E \models \forall \vec{x} (s \approx t)$.
4. $\mathcal{I}_E \models \forall \vec{x} (s \approx t)$.

By Theorem 4.1.11 the semantics of *E* and \leftrightarrow_E^* coincide. In order to decide \leftrightarrow_E^* we need to turn \rightarrow_E^* into a confluent and terminating relation.

If \leftrightarrow_E^* is terminating then confluence is equivalent to local confluence, see Newman's Lemma, Lemma 1.6.6. Local confluence is the following problem for TRS: if $t_1 \xrightarrow{} t_0 \rightarrow_E t_2$, does there exist a term *s* so that $t_1 \rightarrow_E^* s \xrightarrow{} t_2$?

If the two rewrite steps happen in different subtrees (disjoint redexes) then a repitition of the respective other step yields the common term s.

If the two rewrite steps happen below each other (overlap at or below a variable position) again a repetition of the respective other step yields the common term s.

If the left-hand sides of the two rules overlap at a non-variable position there is no ovious way to generate *s*.

More technically two rewrite rules $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ overlap if there exist some non-variable subterm $l_1|_p$ such that l_2 and $l_1|_p$ have a common instance $(l_1|_p)\sigma_1 = l_2\sigma_2$. If the two rewrite rules do not have common variables, then only a single substitution is necessary, the mgu σ of $(l_1|_p)$ and l_2 .

4.2.1 Definition (Critical Pair)

Let $l_i \rightarrow r_i$ (i = 1, 2) be two rewrite rules in a TRS *R* without common variables, i.e., $vars(l_1) \cap vars(l_2) = \emptyset$. Let $p \in pos(l_1)$ be a position so that $l_1|_p$ is not a variable and σ is an mgu of $l_1|_p$ and l_2 . Then $r_1\sigma \leftarrow l_1\sigma \rightarrow (l_1\sigma)[r_2\sigma]_p$.

 $\langle r_1\sigma, (l_1\sigma)[r_2\sigma]_p \rangle$ is called a *critical pair* of *R*.

The critical pair is *joinable* (or: converges), if $r_1 \sigma \downarrow_R (l_1 \sigma) [r_2 \sigma]_p$.

4.2.2 Theorem ("Critical Pair Theorem")

A TRS *R* is locally confluent iff all its critical pairs are joinable.

4.3.4 Theorem (TRS Termination)

A TRS *R* terminates if and only if there exists a reduction ordering \succ so that $l \succ r$ for every rule $l \rightarrow r \in R$.

Knuth-Bendix Completion (KBC)

Given a set E of equations, the goal of Knuth-Bendix completion is to transform E into an equivalent convergent set R of rewrite rules. If R is finite this yields a decision procedure for E.

For ensuring termination the calculus fixes a reduction ordering \succ and constructs R in such a way that $\rightarrow_R \subseteq \succ$, i.e., $l \succ r$ for every $l \rightarrow r \in R$.

For ensuring confluence the calculus checks whether all critical pairs are joinable.

The completion procedure itself is presented as a set of abstract rewrite rules working on a pair of equations *E* and rules *R*: $(E_0;R_0) \Rightarrow_{\text{KBC}} (E_1;R_1) \Rightarrow_{\text{KBC}} (E_1;R_2) \Rightarrow_{\text{KBC}} \dots$

The initial state is (E_0, \emptyset) where $E = E_0$ contains the input equations.

If \Rightarrow_{KBC} successfully terminates then *E* is empty and *R* is the convergent rewrite system for *E*₀.

For each step $(E; R) \Rightarrow_{\mathsf{KBC}} (E'; R')$ the equational theories of $E \cup R$ and $E' \cup R'$ agree: $\approx_{E \cup R} = \approx_{E' \cup R'}$. By $\operatorname{cp}(R)$ I denote the set of critical pairs between rules in R.

Orient if $s \succ t$	$(E \uplus \{ s \stackrel{\cdot}{\approx} t \}; R) \Rightarrow_{KBC}$	$(E; R \cup \{s \to t\})$
Delete	$(E \uplus \{s \approx s\}; R) \Rightarrow_{KBC}$	(<i>E</i> ; <i>R</i>)
Deduce if $\langle \boldsymbol{s}, t \rangle \in cp(\boldsymbol{R})$	$(E; R) \Rightarrow_{KBC} (E \cup \{s \approx$	e t}; R)

Simplify-Eq $(E \uplus \{s \approx t\}; R) \Rightarrow_{\mathsf{KBC}} (E \cup \{u \approx t\}; R)$ if $s \rightarrow_R u$

R-Simplify-Rule $(E; R \uplus \{s \to t\}) \Rightarrow_{\mathsf{KBC}} (E; R \cup \{s \to u\})$ if $t \to_R u$

L-Simplify-Rule $(E; R \uplus \{s \to t\}) \Rightarrow_{\mathsf{KBC}} (E \cup \{u \approx t\}; R)$ if $s \to_R u$ using a rule $I \to r \in R$ so that $s \sqsupset I$, see below.

Trivial equations cannot be oriented and since they are not needed they can be deleted by the Delete rule.

The rule Deduce turns critical pairs between rules in *R* into additional equations. Note that if $\langle s, t \rangle \in cp(R)$ then $s_R \leftarrow u \rightarrow_R t$ and hence $R \models s \approx t$.

The simplification rules are not needed but serve as reduction rules, removing redundancy from the state. Simplification of the left-hand side may influence orientability and orientation of the result. Therefore, it yields an equation. For technical reasons, the left-hand side of $s \rightarrow t$ may only be simplified using a rule $l \rightarrow r$, if $l \rightarrow r$ cannot be simplified using $s \rightarrow t$, that is, if $s \sqsupset l$, where the *encompassment quasi-ordering* \sqsupset is defined by $s \sqsupset l$ if $s|_p = l\sigma$ for some *p* and σ and $\sqsupset = \sqsupset \setminus \sqsubseteq$ is the strict part of \sqsupset .

4.4.4 Proposition (Knuth-Bendix Completion Correctness)

If the completion procedure on a set of equations E is run, different things can happen:

- 1. A state where no more inference rules are applicable is reached and *E* is not empty. \Rightarrow Failure (try again with another ordering?)
- 2. A state where *E* is empty is reached and all critical pairs between the rules in the current *R* have been checked.
- 3. The procedure runs forever.

4.4.5 Definition (Run)

A (finite or infinite) sequence $(E_0; R_0) \Rightarrow_{KBC} (E_1; R_1) \Rightarrow_{KBC} (E_2; R_2) \Rightarrow_{KBC} \dots$ with $R_0 = \emptyset$ is called a *run* of the completion procedure with input E_0 and \succ . For a run, $E_{\infty} = \bigcup_{i \ge 0} E_i$ and $R_{\infty} = \bigcup_{i \ge 0} R_i$.

4.4.6 Definition (Persistent Equations)

The sets of *persistent equations of rules* of the run are $E_* = \bigcup_{i \ge 0} \bigcap_{j \ge i} E_j$ and $R_* = \bigcup_{i \ge 0} \bigcap_{j \ge i} R_j$.

Note: If the run is finite and ends with E_n , R_n then $E_* = E_n$ and $R_* = R_n$.

4.4.7 Definition (Fair Run)

A run is called *fair* if $CP(R_*) \subseteq E_{\infty}$ (i.e., if every critical pair between persisting rules is computed at some step of the derivation).

4.4.10 Theorem (KBC Soundness)

Let $(E_0; R_0) \Rightarrow_{KBC} (E_1; R_1) \Rightarrow_{KBC} (E_2; R_2) \Rightarrow_{KBC} \dots$ be a fair run and let R_0 and E_* be empty. Then

- every proof in E_∞ ∪ R_∞ is equivalent to a rewrite proof in R_{*},
- 2. R_* is equivalent to E_0 and
- 3. R_* is convergent.

Complexity

3.15.2 Theorem (Equational Logic Validity is Undecidable)

Validity of an equation modulo a set of equations is undecidable.

(Proof Scetch) Given a PCP with word lists (u_1, \ldots, u_n) and (v_1, \ldots, v_n) over alphabet $\{a, b\}$, it is represented by two unary functions g_a and g_b , constants ϵ , c, d, and a binary function f_R , all over some sort S. Then a word pair u_i , v_i is encoded by the equation $f_R(u_i(x), v_i(y)) \approx f_R(x, y)$ and the start state with the empty word is encoded by equation $f_R(\epsilon, \epsilon) \approx d$ and the final state identifying two equal words different from ϵ by the equations $f_R(g_a(x), g_a(x)) \approx c$, $f_R(g_b(x), g_b(x)) \approx c$. I call the set of these equations E. Now the PCP over the two word lists has a solution iff $E \models c \approx d$.

4.4.11 Corollary (KBC Termination)

Termination of \Rightarrow_{KBC} is undecidable for some given finite set of equations *E*.

(Proof Scetch) Using exactly the construction of Theorem 3.15.2 it remains to be shown that all computed critical pairs can be oriented. Critical pairs corresponding to the search for a PCP solution result in equations $f_R(u(x), v(y)) \approx f_R(u'(x), v'(y))$ or $f_R(u'(x), v'(x)) \approx c$. By chosing an appropriate ordering, all these equations can be oriented. Thus \Rightarrow_{KBC} does not produce any unorientable equations. The rest follows from Theorem 3.15.2.

