
Chapter 6

Decidable Logics

This chapter is about decidable logics. There are many decidable fragments
of first-order logic, some of them are discussed in Chapter 3 and Chapter 5.
Here I discuss logics that are typically not representable in first-order logic,
e.g., linear integer arithmetic, Section 6.2, or logics where specialized decision
procedures exist, beyond the general procedures discussed in previous chapters,
e.g., equational reasoning on ground terms by congruence closure, Section 6.1,
that can also be solved by Knuth-Bendix completion, Chapter 4.

6.1 Congruence Closure

In general, satisfiability of first-order formulas with respect to equality is un-
decidable. Even the word problem for conjunctions of equations is undecidable.
However, I will show that satisfiability is decidable for ground first-order formu-
las.

It suffices to consider conjunctions of literals. Arbitrary ground formulas can
be converted into DNF, potentially at the price of an exponential blow up. A
formula in DNF is satisfiable if and only if one of its conjunctions is satisfiable.
So it is sufficient to consider a conjunction of ground literals, e.g., a conjunction
of ground equations.

Note that the problem can be written in several ways. An equational clause

∀x⃗ (t1 ≈ s1 ∨ . . . ∨ tn ≈ sn ∨ l1 ̸≈ r1 ∨ . . . ∨ lk ̸≈ rk)

is valid iff

∃x⃗ (t1 ̸≈ s1 ∧ . . . ∧ tn ̸≈ sn ∧ l1 ≈ r1 ∧ . . . ∧ lk ≈ rk)

is unsatisfiable iff the Skolemized (ground!) formula

(t1 ̸≈ s1 ∧ . . . ∧ tn ̸≈ sn ∧ l1 ≈ r1 ∧ . . . ∧ lk ≈ rk){x⃗ 7→ c⃗}

is unsatisfiable iff the formula

253

254 CHAPTER 6. DECIDABLE LOGICS

(t1 ≈ s1 ∨ . . . ∨ tn ≈ sn ∨ l1 ̸≈ r1 ∨ . . . ∨ lk ̸≈ rk){x⃗ 7→ c⃗}

is valid.

T

Please note validity of these transformations do depends on the shape
of the (starting) formula. Validity is no preserved in case of a quantifier
alternation or an existentially quantified formula, in general, or the

eventual formula must not be ground. There is no way to transform a first-order
(equational) formula into a ground formula preserving validity, in general.

The theory is also known as EUF (equality with uninterpreted function
symbols) and one of the standard theories considered in SMT (Satisfiability
Modulo Theories). The decision procedure discussed here is based on congruence
closure.

The goal of the procedure is to check (un-)satisfiability of a ground conjunc-
tion

s1 ̸≈ t1 ∧ . . . ∧ sk ̸≈ tk ∧ l1 ≈ r1 ∧ . . . ∧ ln ≈ rn

The main idea is to transform the equations E = {l1 ≈ r1, . . . , ln ≈ rn} into
an equivalent convergent TRS R and check whether si↓R = ti↓R. If si↓R = ti↓R
for some i then because si↓R = ti↓R iff si ↔∗

E ti iff E |= si ≈ ti (see Chapter 4)
the overall conjunction is unsatisfiable. If si↓R = ti↓R for no i, i.e., si↓R ̸= ti↓R
for all i then IE is a model of both the equations li ≈ ri, and the inequations
sj ̸≈ tj . Hence the overall conjunction is satisfiable.

Knuth-Bendix completion, Chapter 4, can be used to convert E into an
equivalent convergent TRS R. If done properly, Knuth-Bendix completion al-
ways terminates for ground inputs. However, for the ground case, the procedure
can be further optimized.

The first step is to introduce additional “names”, i.e, extra constants for all
non-constant subterms. This implements implicitly sharing among subterms.

Let E = [l1 ≈ r1, . . . , ln ≈ rn] be a sequence of equations interpreted as a
conjunction.

Flattening E ⇒CCF E[c]p1,...,pk [f(t1, . . . , tn) ≈ c]
provided E|p1,...,pk = f(t1, . . . , tn), all ti are constants, the pj are all positions in
E of f(t1, . . . , tn), |pl| > 2 for some l, or, pl = m.2 and E|m.1 is not a constant
for some m, and c is fresh

Here I consider E to be a sequence of equations in order for the positions
to make sense. Note that after applying flattening to some term f(t1, . . . , tn) it
cannot be applied a second time, because the position p pointing to f(t1, . . . , tn)
in E[c]p1,...,pk ∧ f(t1, . . . , tn) ≈ c has size 2, i.e., |p| = 2.

For example, the system E = [g(a, h(h(b))) ≈ h(a)] is eventually replaced
by E = [h(b) ≈ c3, h(c3) ≈ c4, h(a) ≈ c5, g(a, c4) ≈ c5].

6.1. CONGRUENCE CLOSURE 255

As a result: only two kinds of equations left. Term equations: f(ci1 , . . . , cin) ≈
ci0 and constant equations: ci ≈ cj . This can be further explored in an imple-
mentation by specific data structures. In particular, a union-find data structure
efficiently represents the equivalence classes encoded by the constant equations
(rules).

The congruence closure algorithm is presented as a set of abstract rewrite
rules operating on a pair of equations E and a set of rules R, (E;R), similar to
Knuth-Bendix completion, Section 4.4.

(E0;R0)⇒CC (E1;R1)⇒CC (E2;R2)⇒CC . . .
At the beginning, E = E0 is a set of constant equations ci ≈ cj and R0

is the set of term equations f(ci1 , . . . , cin) ≈ ci0 oriented from left-to-right. At
termination, E is empty and R contains the result. By exhaustive application
of Flattening any conjunction of equations can be transformed into this form,
preserving satisfiability. Recall that the atom s

.
≈ t denotes either s ≈ t or t ≈ s.

Simplify (E ⊎ {c
.
≈ c′};R ⊎ {c→ c′′}) ⇒CC (E ∪ {c′′

.
≈ c′};R ∪ {c→ c′′})

Delete (E ⊎ {c ≈ c};R) ⇒CC (E;R)

Orient (E ⊎ {c
.
≈ c′};R) ⇒CC (E;R ∪ {c→ c′})

if c ≻ c′

Deduce (E;R ⊎ {t→ c, t→ c′}) ⇒CC (E ∪ {c ≈ c′};R ∪ {t→ c})

Collapse (E;R ⊎ {t[c]p → c′, c→ c′′}) ⇒CC (E;R ∪ {t[c′′]p → c′, c→ c′′})
p ̸= ϵ

For rule Deduce, t is either a term of the form f(c1, . . . , cn) or a constant ci.
For rule Collapse, t is always of the form f(c1, . . . , cn) For ground rewrite rules,
critical pair computation does not involve substitution. Therefore, every critical
pair computation can be replaced by a simplification, either using Deduce or
Collapse.

The inference rules are usually applied according to the following strategy:
Simplify, Delete and Orient are preferred over Deduce and Collapse. Then if
Collapse becomes applicable, it is applied exhaustively.

Instead of fixing the ordering ≻ in advance, it is preferable to define it on
the fly during the algorithm: if an equation c ≈ c′ between two constants is
oriented, a good heuristic is to make that constant symbol larger that occurs
less often in R, hence producing afterwards fewer Collapse steps.

The average runtime of the algorithm is O(m logm), where m is the number
of edges in the graph representation of the initial constant and term equations.

The inference rules are sound in the usual sense. The conclusions are entailed
by the premises, so every model of the premises is a model of the conclusions.

For the initial flattening rule , however, only a weaker result holds. The
models of the original equations have to be extended by interpretations for the

256 CHAPTER 6. DECIDABLE LOGICS

freshly introduced constants to obtain models of the flattened equations. The
result is a new algebra with the same universe as the old one, with the same
interpretations for old functions and predicate symbols, but with appropriately
chosen interpretations for the new constants.

Consequently, the relations ≈E and ≈R for the original E and the final R are
not the same. On the other hand, the model extension preserves the universe
and the interpretations for old symbols. Therefore, if s and t are terms over the
old symbols, we have s ≈E t iff s ≈R t. This is sufficient for our purposes: The
terms si and ti that we want to normalize using R do not contain new symbols.

6.1.1 History

Congruence closure algorithms have been published, among others, by Shostak
(1978). by Nelson and Oppen (1980), and by Downey, Sethi and Tarjan (1980).

Kapur (1997) showed that Shostak’s algorithm can be described as a com-
pletion procedure.

Bachmair and Tiwari (2000) did this also for the Nelson/Oppen and the
Downey/Sethi/Tarjan algorithm.

The algorithm presented here is the Downey/Sethi/Tarjan algorithm in the
presentation of Bachmair and Tiwari.

6.2 Linear Arithmetic

There are several ways of introducing linear arithmetic and in particular its
syntax. I start with a syntax that already contains −, ≤, <, ≥, ̸≈ and Q. All
these functions and relations are indeed expressible by first-order formulas over
0, 1, ≈, and >. For the semantics there are two approaches. Either providing
axioms, i.e., closed formulas, for the above symbols and then considering all
algebras satisfying the axioms, or fixing one particular algebra or a class of
algebras. For this chapter I start with a rich syntax and a semantics based on a
fixed algebra.

Definition 6.2.1 (LA Syntax). The syntax of LA is

ΣLA = ({LA}, {0, 1,+,−} ∪Q, {≤, <, ̸≈, >,≥})

where − is unitary and all other symbols have the usual arities.

Terms and formulas over ΣLA are built in the classical free first-order way,
see Section 3.1. All first-order notions, i.e., terms, atoms, equations, literals,
clauses, etc. carry over to LA formulas. The atoms and terms built over the LA
signature are written in their standard infix notation, i.e., I write 3 + 5 instead
of +(3, 5). Note that the signature does not contain multiplication. A term 3x
is just an abbreviation for a term x + x + x. For the isolation of variables in
inequations, we will temporarily introduce also multiplication of a variable with

Chapter 7

Propositional Logic Modulo
Theories

In Chapter 6 I have studied a number of decision procedures for conjunctions
of literals of some specific first-order theory or fragment. In this chapter the
decision procedures are extended in two different ways. Firstly, by considering
conjunctions of literals over several first-order theories. The respective proce-
dure is the Nelson-Oppen combination procedure for theories [66], Section 7.1.
Secondly, I lift the procedure from conjunctions of literals to arbitrary boolean
combinations of literals. The respective procedure is CDCL(T), Section 7.2.

7.1 Nelson-Oppen Combination

Here I discuss a basic variant of the Nelson-Oppen [66] (NO) combination pro-
cedure for two theories T1 and T2 (see Definition 3.17.1) over two respective
signatures Σ1 and Σ2 that do not share any function, constant, or predicate
symbols, but may share sorts. The idea of the procedure is to reduce satisfia-
bility of a quantifier-free formula over Σ1 ∪ Σ2 to satisfiability of two separate
formulas over Σ1 and Σ2, respectively.

The underlying semantics is that a quantifier-free formula ϕ over Σ1 ∪ Σ2

is satisfiable if there exists a Σ1 ∪ Σ2 algebra A such that A(β) |= ϕ for some
assignment β, and A|Σ1

is isomorphic to a model in T1 and A|Σ2
is isomorphic to

a model in T2. Here A|Σ denotes the restriction of A to the symbols in Σ. With
appropriate restrictions, see below, the problem of testing satisfiability of ϕ can
actually be reduced to solving finitely many separate satisfiability problems in
Σ1 and Σ2, respectively.

Note that both theories share the equality symbol, because it is part of
the first-order operator language. It is needed to separate the theories by the
introduction of extra variables, called parameters and to transfer results from
reasoning in T1 to T2 and vice versa.

For example, consider a combination of T1 = {ALRA }, Section 6.2,

279

280 CHAPTER 7. PROPOSITIONAL LOGIC MODULO THEORIES

with EUF, T2 = {⊤}, Section 6.1 with signatures Σ1 = ΣLA and Σ2 =
({S,LA}, {g, a, b, c}, ∅) and ground formula

ϕ = g(b) > 5 ∧ g(c) < 5 ∧ g(c) ≈ a ∧ g(b) ≈ a.

Note that for LRA I fixed the standard algebra, whereas for EUF I fixed a
set with one axiom, actually ⊤. So for EUF all first-order Σ2-algebras are con-
sidered. For both theories Chapter 6 contains decision procedures, however, ϕ
contains mixed atoms such as g(b) > 5 that cannot be processed by the respec-
tive decision procedures. So the first step is purification where all mixed atoms
are translated into pure atoms of Σ1, Σ2, respectively.

ϕ = xLA > 5 ∧ yLA < 5 ∧ g(c) ≈ a ∧ g(b) ≈ a ∧ g(b) ≈ xLA ∧ g(c) ≈ yLA

Note parameters, e.g., xLA, yLA, are always implicitly existentially quantified.
Now the separated formulas considered for both theories are

ϕ1 = xLA > 5 ∧ yLA < 5
ϕ2 = g(c) ≈ a ∧ g(b) ≈ a ∧ g(b) ≈ xLA ∧ g(c) ≈ yLA

Any LRA procedure for ϕ1 immediately returns true. Congruence closure ap-
plied to ϕ2 generates xLA ≈ yLA for the two existentially quantified variables.
Transferring this equation to the LRA procedure on ϕ1 ∧ xLA = yLA results in
false. Therefore, ϕ is not satisfiable.

The example exhibits another property required by the respective theories,
they have to be convex : if a disjunction of equations is the consequence of the
theory, actually one equation holds. This property holds for LRA but not for
LIA. For example,

1 < xLIA ∧ xLIA < 4 |=LIA xLIA = 2 ∨ xLIA = 3

but none of the two single disjuncts is a consequence. Therefore, the Nelson-
Oppen combination procedure between LIA and EUF will not be able to detect
unsatisfiability of the already purified formulas

ϕ1 =1 < xLIA ∧ xLIA < 4 ∧ 1 < yLIA ∧ yLIA < 4 ∧ 1 < zLIA ∧ zLIA < 4
ϕ2 =xLIA ̸≈ yLIA ∧ yLIA ̸≈ zLIA ∧ zLIA ̸≈ xLIA.

Definition 7.1.1 (Convex Theory). A theory T is convex if for a conjunction
ϕ of literals with ϕ |=T x1 ≈ y1 ∨ . . . ∨ xn ≈ yn then ϕ |=T xk ≈ yk for some k.

Another property needed for the Nelson-Oppen procedure to work is that
the theory models always include models with an infinite domain. Consider the
two theories

T1 = {∀x, y(x ≈ a ∨ x ≈ b)}

and
T2 = {∀x, y, z.(x ̸≈ y ∨ x ̸≈ z ∨ y ̸≈ z}

that do not share any signature symbols. Models of T1 have at most two el-
ements, models of T2 at least three. So the conjunction (T1 ∪ T2) is already

7.1. NELSON-OPPEN COMBINATION 281

unsatisfiable. In order to ensure that different models for the respective theory
can be combined, the Nelson-Oppen procedure requires the existence of models
with infinite cardinality.

Definition 7.1.2 (Stably-Infinite Theory). A theory T is stably-infinite if for
every quantifier-free formula ϕ, if T |= ϕ, then then there exists also a model A
of infinite cardinality, such that A |=T ϕ

Definition 7.1.3 (Nelson-Oppen Basic Restrictions). Let T1 and T2 be two
theories. Then the Nelson-Oppen Basic Restrictions are:

1. There are decision procedures for T1 and T2.

2. Each decision procedure returns a complete set of variable identities as
consequence of a formula.

3. Σ1 ∩ Σ2 = ∅ except for common sorts.

4. Both theories are convex.

5. T1 and T2 are stably-infinite.

Actually, restriction 7.1.3-2 is not needed, because a given finite quantifier-
free formula ϕ over Σ1 ∪Σ2 contains only finitely many different variables. Now
instead of putting the burden to identify variables on the decision procedure,
all potential variable identifications can be guessed and tested afterwards. The
disadvantage of this approach is, of course, that there are exponentially many
identifications with respect to a fixed number of variables. Therefore, assuming
7.1.3-2 results in a more efficient procedure and is also supported by many
procedures from Section 6. Still I will also formulate the procedure with respect
to guessing the identifications, Definition 7.1.6, Proposition 7.1.7, because it
enables a more elegant proof of completeness.

Restriction 7.1.3-5 can be further relaxed to assume that the domains of
all shared sorts of all models are either infinite or have the same number of
elements.

The Nelson-Oppen restrictions and procedure can be extended from two so
several theories in the obvious way.

Example 7.1.4. T1 may be LA with the standard LA model over Q as the
only model in C1 and T2 is EUF over Σ2 = {a, g, f}, where a is a constant, g
has arity 1 and f arity 2, with all respective term-generated models in C2.

The goal of the Nelson-Oppen combination procedure is now to decide the
satisfiability of a quantifier-free formula ϕ over Σ1 ∪ Σ2. The variables are im-
plicitly existentially quantified. It actually suffices to consider conjunctions of
atoms, because for boolean combinations CDCL(NO), Section 7.2, does the job.
The first step of the procedure is to apply purification, i.e., transform the for-
mula ϕ into a satisfiability equivalent formula ϕ′ such that no term of an atom
in ϕ′ contains symbols from Σ1 and Σ2. This can always be achieved by the
introduction of fresh variables.

282 CHAPTER 7. PROPOSITIONAL LOGIC MODULO THEORIES

Example 7.1.5. Consider the atom f(x1, 0) ≥ x3 with respect to the theories
of Example 7.1.4. The satisfiability preserving purified formula for f(x1, 0) ≥ x3
is x4 ≥ x3 ∧ x4 ≈ f(x1, x5) ∧ x5 ≈ 0.

Let N be a set of Σ1 ∪ Σ2 literals interpreted as the conjunction. Then
purification amounts to the exhaustive application of the following rule.

Purify N ⊎ {L[t[s]i]p} ⇒NO N ⊎ {L[t[z]i]p, z ≈ s}
if t = f(t1, . . . , tn), s = h(s1, . . . , sm), the function symbols f and h are from dif-
ferent signatures, 1 ≤ i ≤ n, (i.e., ti = s) and z is a fresh variable of appropriate
sort

After exhaustive application of Purify to any set N of Σ1 ∪ Σ2 literals the
set N can actually be split into two sets N = N1 ∪ N2 where N1 is build over
Σ1, N2 is build over Σ2 and N1 and N2 only share variables. Variable equations
are distributed in both N1 and N2. Now a Nelson-Oppen problem state is a
five tuple (N1, E1, N2, E2, s) with s ∈ {⊤,⊥, fail}, the sets E1 and E2 contain
variable equations, and N1, N2 literals over the respective signatures, where

(N1; ∅;N2; ∅;⊥) is the start state for some purified set of atoms N =
N1 ∪ N2 where the Ni are built from the respective
signatures only

(N1;E1;N2;E2; fail) is a final state, whereN1∪N2∪E1∪E2 is unsatisfiable
(N1;E1;N2;E2;⊥) is an intermediate state, where N1 ∪E2 and N2 ∪E1

have to be checked for satisfiability
(N1; ∅;N2; ∅;⊤) is a final state, where N1 ∪N2 is satisfiable

Solve (N1;E1;N2;E2;⊥) ⇒NO (N ′
1;E

′
1;N

′
2;E

′
2;⊥)

if N ′
1 = N1∪E1∪E2 and N ′

2 = N2∪E1∪E2 are both Ti-satisfiable, respectively,
E′

1 are all new variable equations derivable from N ′
1, E

′
2 are all new variable

equations derivable from N ′
2 and E′

1 ∪ E′
2 ̸= ∅

Success (N1;E1;N2;E2;⊥) ⇒NO (N ′
1; ∅;N ′

2; ∅;⊤)
if N ′

1 = N1∪E1∪E2 and N ′
2 = N2∪E1∪E2 are both Ti-satisfiable, respectively,

E′
1 are all new variable equations derivable from N ′

1, E
′
2 are all new variable

equations derivable from N ′
2 and E′

1 ∪ E′
2 = ∅

Fail (N1;E1;N2;E2;⊥) ⇒NO (N1;E1;N2;E2; fail)

if N ′
1 = N1 ∪ E1 ∪ E2 or N ′

2 = N2 ∪ E1 ∪ E2 is Ti-unsatisfiable, respectively

I

In the definition of the rules all derived equalities between variables
are added to N1 and N2 and the decision procedures are always called
to test satisfiability and produce new variable equalities. In an imple-

mentation this is not needed, a decision procedure needs only to be called if a
new equality was derived by the other decision procedure.

7.1. NELSON-OPPEN COMBINATION 283

The EUF decision procedure can easily be extended to explicitely produce
derived variable equalities. For the suggested LA procedures (Fourier-Motzkin,
Simplex, Virtual Substitution) this requires some extra work.

As a first example, consider the formula over LA and EUF

f(x1, 0) ≥ x3 ∧ f(x1, 0) ≤ x3

which becomes after purification

x4 ≥ x3 ∧ f(x1, x5) ≈ x4 ∧ x5 ≈ 0 ∧ x6 ≤ x3 ∧ f(x1, x5) ≈ x6

and the respective NO derivation is

({x4 ≥ x3, x5 ≈ 0, x6 ≤ x3}, ∅, {f(x1, x5) ≈ x4, f(x1, x5) ≈ x6}, ∅,⊥)
⇒Solve

NO ({x4 ≥ x3, x5 ≈ 0, x6 ≤ x3}, ∅,
{f(x1, x5) ≈ x4, f(x1, x5) ≈ x6}, {x4 ≈ x6},⊥)

⇒Solve
NO ({x4 ≈ x6, x4 ≥ x3, x5 ≈ 0, x6 ≤ x3}, {x4 ≈ x3, x6 ≈ x3},

{f(x1, x5) ≈ x4, f(x1, x5) ≈ x6, x4 ≈ x6}, ∅,⊥)
⇒Success

NO ({x4 ≈ x6, x4 ≥ x3, x5 ≈ 0, x6 ≤ x3, x4 ≈ x3, x6 ≈ x3}, ∅,
{f(x1, x5) ≈ x4, f(x1, x5) ≈ x6, x4 ≈ x6, x4 ≈ x3, x6 ≈ x3}, ∅,⊤)

I

Note that the Purify rule was applied in the above example in a
slightly different way where the variable x5 is shared for both oc-
currences of the term f(x1, 0). For an actual implementation, it is
desirable to share as many subterms as possible that way.

As a second example, consider the formula over LA and EUF

x− y ≈ 0 ∧ g(x) ̸≈ g(y)

which is already purified and the respective NO derivation is

({x− y ≈ 0}, ∅, {g(x) ̸≈ g(y)}, ∅,⊥)
⇒Solve

NO ({x− y ≈ 0}, {x ≈ y}, {g(x) ̸≈ g(y)}, ∅,⊥)
⇒Fail

NO ({x− y ≈ 0}, {x ≈ y}, {g(x) ̸≈ g(y)}, ∅, fail)

For EUF variable identities are anyway computed by the congruence closure
algorithm when computing the equivalence classes by generating a terminating
and confluent R (see Section 6.1). However, for LA and, e.g., the simplex algo-
rithm (see Section 6.2.2), it only comes at additional cost to identify variable
identities.

Definition 7.1.6 (Arrangement). Given a (finite) set of parameters X, an
arrangement A over X is a (finite) set of equalities and inequalities over X such
that for all x1, x2 ∈ X either x1 ≈ x2 ∈ A or x1 ̸≈ x2 ∈ A.

284 CHAPTER 7. PROPOSITIONAL LOGIC MODULO THEORIES

Proposition 7.1.7 (Nelson-Oppen modulo Arrangement). Let T1 and T2 be
two theories satisfying the restrictions of Definition 7.1.3 except for restriction 2.
Let ϕ be a conjunction of literals over Σ1 ∪ Σ2. Let N1 and N2 be the purified
literal sets out of ϕ. Then ϕ is satisfiable iff there is an arrangement A over
vars(ϕ) such that N1 ∪A is T1-satisfiable and N2 ∪A is T2-satisfiable.

Note that it is not sufficient to consider just equalities for some arrangement,
because in one theory these equalities might imply further equalities which are
then not transferred into the other theory.

Theorem 7.1.8 (Nelson-Oppen is Sound, Complete and Terminating). Let
T1, T2 be two theories satisfying the Nelson-Oppen basic restrictions. Let ϕ be
a conjunction of literals over Σ1 ∪ Σ2 and N1, N2 be the result of purifying ϕ.
(i) All sequences (N1; ∅;N2; ∅;⊥)⇒∗

NO . . . are finite.
Let (N1; ∅;N2; ∅;⊥) ⇒∗

NO (N1;E1;N2;E2; s) be a derivation with finite state
(N1;E1;N2;E2; s),
(ii) If s = fail then ϕ is unsatisfiable in T1 ∪ T2.
(iii) If s = ⊤ then ϕ is satisfiable in T1 ∪ T2.

Proof. (i) The relation⇒NO terminates as soon as no new equations are derived
or one combination of formulas and equations is unsatisfiable. There are only
finitely many different equations over the common variables of N1, N2, so ⇒NO

terminates.

(ii) Clearly purification preservers satisfiability. The Solve rule only adds
logical consequences of the respective theory. Hence, if rule Fail is applicable
then clearly N1 ∪ E1 (N2 ∪ E2) is unsatisfiable, hence ϕ is not satisfiable. This
proves soundness.

(iii) Completeness is more complicated. I show it for the Nelson-Oppen for-
mulation modulo arrangements, Proposition 7.1.7, completeness of⇒NO is then
implied by convexity of T1, T2. Assume that the theories T1, T2 are given by
possibly countably infinite sets of first-order clauses, we also denote by T1, T2.
Then T1 ∪ T2 ∪ {ϕ} is unsatisfiable iff T1 ∪ T2 ∪ N1 ∪ N2 is unsatisfiable iff
(T1∧N1)→ (¬T2∨¬N2) is valid. By Craig’s interpolation Theorem 3.12.15, there
exists a finite set of clauses H such that T1 ∧N1 → H and H → (¬T2 ∨ ¬N2),
or, reformulated, (H ∧ T2) → ¬N2. The symbols used in H are common non-
variable symbols of N1 and N2. So H is a conjunction of clauses over equations
with universally quantified variables yj and shared parameters xi. It has the
form

∧∨
[¬]ti ≈ tj of equational literals where the ti, tj are universally quan-

tified variables yj or parameters xi. An equation yi ≈ yj between universally
quantified variables is true iff i = j and therefore needs not to be considered.
Now this CNF can be transformed into a DNF yielding

∨∧
ti ≈ tj , in sum-

mary, (T1 ∧ N1) → (
∨∧

ti ≈ tj). Next, I prove by contradiction that actually
one conjunct

∧
ti ≈ tj is implied and no ti, tj is a universally quantified variable.

Assume this is not the case, i.e., in each of the conjuncts there are equation(s)
[¬]xi ≈ ai needed to establish the overall truth of (T1 ∧ N1) → (

∨∧
ti ≈ tj).

Then (T1 ∧N1)→ (
∨
xi ≈ ai), where I filter only the positive equations out of

7.2. CDCL(T) 285

the conjuncts. But the formula (
∨
xi ≈ ai) implies a finite model, contradict-

ing that T1 is stably infinite. Therefore, if T1 ∪ T2 ∪ N1 ∪ N2 is unsatisfiable,
then there is an arrangement E of the parameters such that (T1 ∧ N1 ∧ E) or
(T2 ∧N2 ∧ E) is unsatisfiable.

7.2 CDCL(T)

Consider a SAT problem where the propositional variables actually stand for
ground atoms over some theory T , or a Nelson-Oppen combination of theories,
e.g., ground equations or ground atoms of LRA, i.e., LRA atoms where all vari-
ables are existentially quantified. The basic idea of all procedures in this section
is to apply CDCL, Section 2.9, in order to investigate the boolean structure
of the problem. If CDCL derives unsatisfiability, then the problem clearly is. If
CDCL derives satisfiability, then a ground decision procedure for T has to check
whether the actual CDCL assignment constitutes also a model in T .

For example, let T be the purely equational ground theory over free sym-
bols (EUF) where we consider Congruence Closure (Section 6.1) as a decision
procedure. Now consider a formula

f(a) ≈ b ∧ b ≈ c ∧ (f(a) ̸≈ c ∨ a ̸≈ c)

and its boolean abstraction (clauses)

P1 ∧ P2 ∧ (P3 ∨ P4).

A CDCL algorithm might find the propositional model M1 = P1P2P3. Obvi-
ously, the respective literals f(a) ≈ b, b ≈ c, f(a) ̸≈ c are contradictory in EUF.
So M1 does not correspond to a T -model. The congruence closure algorithm
can easily justify this contradiction with respect to the literals P1, P2, P3, and
hence the CDCL algorithm can learn the clause ¬P1 ∨ ¬P2 ∨ ¬P3. Adding this
clause to the above clauses

P1 ∧ P2 ∧ (P3 ∨ P4) ∧ (¬P1 ∨ ¬P2 ∨ ¬P3)

the CDCL algorithm finds the next model M2 = P1P2¬P3P4 corresponding to
the literals f(a) ≈ b, b ≈ c, f(a) ≈ c, and a ̸≈ c which are satisfiable in EUF.
So, an overall model is found.

Let N be a finite set of clauses over some theory T over signature ΣT such
that there exists a decision procedure for satisfiability of a conjunction of literals:
|=T L1∧. . .∧Ln. Let atr be a bijection from the atoms over ΣT into propositional
variables ΣPROP such that atr−1(atr(A)) = A. Furthermore, atr distributes over
the propositional operators, e.g., atr(¬A) = ¬ atr(A).

Lemma 7.2.1 (Correctness of atr). Let N be a set of clauses over some theory
T . If atr(N) |= ⊥ then N |=T ⊥.

