From now on First-order Logic is considered with equality. In this chapter, I investigate properties of a set of unit equations. For a set of unit equations I write E. Full first-order clauses with equality are studied in Chapter 5. I recall certain definitions from Section 1.6 and Chapter 3.

The main reasoning problem considered in this chapter is given a set of unit equations E and an additional equation $s \approx t$, does $E \models s \approx t$ hold? As usual, all variables are implicitly universally quantified. The idea is to turn the equations E into a convergent term rewrite system (TRS) R such that the above problem can be solved by checking identity of the respective normal forms: $s \downarrow_R = t \downarrow_R$. Showing $E \models s \approx t$ is as difficult as proving validity of any first-order formula, see Section 3.15.

For example consider the equational ground clauses $E = \{g(a) \approx b, a \approx b\}$ over a signature consisting of the constants a, b and unary function g, all defined over some unique sort. Then for all algebras A satisfying E, all ground terms over a, b, and g, are mapped to the same domain element. In particular, it holds $E \models g(b) \approx b$. Now the idea is to turn E into a convergent term rewrite system R such that $g(b) \downarrow_R = b \downarrow_R$. To this end, the equations in E are oriented, e.g., a first guess might be the TRS $R_0 = \{g(a) \rightarrow b, a \rightarrow b\}$. For R_0 we get $g(b) \downarrow_{R_0} = g(b), b \downarrow_{R_0} = b$, so not the desired result. The TRS R_0 is not confluent an all ground terms, because $g(a) \rightarrow_{R_0} b$ and $g(a) \rightarrow_{R_0} g(b)$, but b and $g(b)$ are R_0 normal forms. This problem can be repaired by adding the extra rule $g(b) \rightarrow b$ and this process is called completion and is studied in this chapter. Now the extended rewrite system $R_1 = \{g(a) \rightarrow b, a \rightarrow b, g(b) \rightarrow b\}$ is convergent and $g(b) \downarrow_{R_1} = b \downarrow_{R_1} = b$. Termination can be shown by using a KBO (or LPO) with precedence $g \succ a \succ b$. Then the left hand sides of the rules are strictly larger than the right hand sides. Actually, R_1 contains some redundancy, even removing the first rewrite rule $g(a) \rightarrow b$ from R_1 does not violate confluence. Detecting redundant rules is also discussed in this chapter.

Definition 4.0.1 (Equivalence Relation, Congruence Relation). An equivalence relation \sim on a term set $T(\Sigma, X)$ is a reflexive, transitive, symmetric binary
relation on \(T(\Sigma, \mathcal{X}) \) such that if \(s \sim t \) then \(\text{sort}(s) = \text{sort}(t) \).

Two terms \(s \) and \(t \) are called equivalent, if \(s \sim t \).

An equivalence \(\sim \) is called a congruence if \(s \sim t \) implies \(u[s] \sim u[t] \), for all terms \(s, t, u \in T(\Sigma, \mathcal{X}) \). Given a term \(t \in T(\Sigma, \mathcal{X}) \), the set of all terms equivalent to \(t \) is called the equivalence class of \(t \) by \(\sim \), denoted by \([t]_\sim \) := \(\{t' \in T(\Sigma, \mathcal{X}) \mid t' \sim t\} \).

If the matter of discussion does not depend on a particular equivalence relation or it is unambiguously known from the context, \([t]\) is used instead of \([t]_\sim\).

The above definition is equivalent to Definition 3.2.3.

The set of all equivalence classes in \(T(\Sigma, \mathcal{X}) \) defined by the equivalence relation is called a quotient by \(\sim \), denoted by \(T(\Sigma, \mathcal{X})|_\sim \) := \(\{[t] \mid t \in T(\Sigma, \mathcal{X})\} \).

Let \(E \) be a set of equations then \(\sim_E \) denotes the smallest congruence relation “containing” \(E \), that is, \((l \approx r) \in E \) implies \(l \sim_E r \). The equivalence class \([t]_{\sim_E}\) of a term \(t \) by the equivalence (congruence) \(\sim_E \) is usually denoted, for short, by \([t]_E\). Likewise, \(T(\Sigma, \mathcal{X})|_E \) is used for the quotient \(T(\Sigma, \mathcal{X})|_E \) of \(T(\Sigma, \mathcal{X}) \) by the equivalence (congruence) \(\sim_E \).

4.1 Term Rewrite System

I instantiate the abstract rewrite systems of Section 1.6 with first-order terms. The main difference is that rewriting takes not only place at the top position of a term, but also at inner positions.

Definition 4.1.1 (Rewrite Rule, Term Rewrite System). A rewrite rule is an equation \(l \approx r \) between two terms \(l \) and \(r \) so that \(l \) is not a variable and \(\text{vars}(l) \supseteq \text{vars}(r) \). A term rewrite system \(R \), or a TRS for short, is a set of rewrite rules.

Definition 4.1.2 (Rewrite Relation). Let \(E \) be a set of (implicitly universally quantified) equations, i.e., unit clauses containing exactly one positive equation. The rewrite relation \(\rightarrow_E \subseteq T(\Sigma, \mathcal{X}) \times T(\Sigma, \mathcal{X}) \) is defined by

\[
 s \rightarrow_E t \quad \text{iff} \quad \text{there exist} \ (l \approx r) \in E, \ p \in \text{pos}(s), \\
 \text{and matcher} \, \sigma, \ \text{so that} \, \sigma_p = l \sigma \ \text{and} \, t = s[r\sigma]_p.
\]

Note that in particular for any equation \(l \approx r \in E \) it holds \(l \rightarrow_E r \), so the equation can also be written \(l \rightarrow r \in E \).

Often \(s = t \downarrow_R \) is written to denote that \(s \) is a normal form of \(t \) with respect to the rewrite relation \(\rightarrow_R \). Notions \(\rightarrow_R^0, \rightarrow_R^+, \rightarrow_R^\ast, \leftrightarrow_R, \) etc. are defined accordingly, see Section 1.6. An instance of the left-hand side of an equation is called a redex (reducible expression). Contracting a redex means replacing it with the corresponding instance of the right-hand side of the rule. A term rewrite system \(R \) is called convergent if the rewrite relation \(\rightarrow_R \) is confluent and terminating. A set of equations \(E \) or a TRS \(R \) is terminating if the rewrite relation \(\rightarrow_E \) or \(\rightarrow_R \) has this property. Furthermore, if \(E \) is terminating then it is a TRS. A rewrite system is called right-reduced if for all rewrite rules \(l \rightarrow r \)
in R, the term r is irreducible by R. A rewrite system R is called left-reduced if for all rewrite rules $l \rightarrow r$ in R, the term l is irreducible by $R \setminus \{l \rightarrow r\}$. A rewrite system is called reduced if it is left- and right-reduced.

Lemma 4.1.3 (Left-Reduced TRS). Left-reduced terminating rewrite systems are convergent. Convergent rewrite systems define unique normal forms.

Lemma 4.1.4 (TRS Termination). A rewrite system R terminates iff there exists a reduction ordering \succ so that $l \succ r$, for each rule $l \rightarrow r$ in R.

4.1.1 E-Algebras

Let E be a set of universally quantified equations. A model A of E is also called an E-algebra. If $E \models \forall \bar{x}(s \approx t)$, i.e., $\forall \bar{x}(s \approx t)$ is valid in all E-algebras, this is also denoted with $s \approx^E t$. The goal is to use the rewrite relation \rightarrow^E to express the semantic consequence relation syntactically: $s \approx^E t$ if and only if $s \leftrightarrow^* E t$.

Let E be a set of (well-sorted) equations over $T(\Sigma, \mathcal{X})$ where all variables are implicitly universally quantified. The following inference system allows to derive consequences of E:

- **Reflexivity** $E \Rightarrow_E E \cup \{t \approx t\}$
- **Symmetry** $E \cup \{t \approx t'\} \Rightarrow_E E \cup \{t \approx t'\} \cup \{t' \approx t\}$
- **Transitivity** $E \cup \{t \approx t', t' \approx t''\} \Rightarrow_E E \cup \{t \approx t', t' \approx t''\} \cup \{t \approx t''\}$
- **Congruence** $E \cup \{t_1 \approx t_1', \ldots, t_n \approx t_n'\} \Rightarrow_E E \cup \{t_1 \approx t_1', \ldots, t_n \approx t_n'\} \cup \{f(t_1, \ldots, t_n) \approx f(t_1', \ldots, t_n')\}$ for any function $f : \text{sort}(t_1) \times \ldots \times \text{sort}(t_n) \rightarrow S$ for some S
- **Instance** $E \cup \{t \approx t'\} \Rightarrow_E E \cup \{t \approx t'\} \cup \{t \sigma \approx t' \sigma\}$ for any well-sorted substitution σ

Lemma 4.1.5 (Equivalence of $\leftrightarrow^* E$ and \Rightarrow^*_E). The following properties are equivalent:

1. $s \leftrightarrow^*_E t$
2. $E \Rightarrow^*_E s \approx t$ is derivable.

where $E \Rightarrow^*_E s \approx t$ is an abbreviation for $E \Rightarrow^*_E E'$ and $s \approx t \in E'$.

Proof. (i)\Rightarrow(ii): $s \leftrightarrow^*_E t$ implies $E \Rightarrow^*_E s \approx t$ by induction on the depth of the position where the rewrite rule is applied; then $s \leftrightarrow^*_E t$ implies $E \Rightarrow^*_E s \approx t$ by induction on the number of rewrite steps in $s \leftrightarrow^*_E t$.

(ii)\Rightarrow(i): By induction on the size (number of symbols) of the derivation for $E \Rightarrow^*_E s \approx t$. \qed
Corollary 4.1.6 (Convergence of E). If a set of equations E is convergent then $s \approx_E t$ if and only if $s \leftrightarrow^* t$ if and only if $s \downarrow_E = t \downarrow_E$.

Corollary 4.1.7 (Decidability of \approx_E). If a set of equations E is finite and convergent then \approx_E is decidable.

The above Lemma 4.1.5 shows equivalence of the syntactically defined relations \leftrightarrow_E^* and \Rightarrow_E^*. What is missing, in analogy to Herbrand's theorem for first-order logic without equality Theorem 3.5.5, is a semantic characterization of the relations by a particular algebra.

Definition 4.1.8 (Quotient Algebra). For sets of unit equations this is a quotient algebra: Let X be a set of variables. For $t \in T(\Sigma, \mathcal{X})$ let $[t] = \{ t' \in T(\Sigma, \mathcal{X}) \mid E \Rightarrow_E^* t \approx t' \}$ be the congruence class of t. Define a Σ-algebra I_E, called the quotient algebra, technically $T(\Sigma, \mathcal{X})/E$, as follows: $S^{I_E} = \{ [t] \mid t \in T_S(\Sigma, \mathcal{X}) \}$ for all sorts S and $f^{I_E}([t_1], \ldots, [t_n]) = [f(t_1, \ldots, t_n)]$ for $f : \text{sort}(t_1) \times \cdots \times \text{sort}(t_n) \to T \in \Omega$ for some sort T.

Lemma 4.1.9 (I_E is an E-algebra). $I_E = T(\Sigma, \mathcal{X})/E$ is an E-algebra.

Proof. Firstly, all functions f^{I_E} are well-defined: if $[t_i] = [t_i']$, then $[f(t_1, \ldots, t_n)] = [f(t_1', \ldots, t_n')]$. This follows directly from the Congruence rule for \Rightarrow^*.

Secondly, let $\forall x_1 \ldots x_n (s \approx t)$ be an equation in E. Let β be an arbitrary assignment. It has to be shown that $I_E(\beta)(\forall \bar{x}(s \approx t)) = 1$, or equivalently, that $I_E(\gamma)(s) = I_E(\gamma)(t)$ for all $\gamma = \beta[x_i \mapsto [t_i] \mid 1 \leq i \leq n]$ with $[t_i] \in \text{sort}(x_i)^{I_E}$. Let $\sigma = \{ x_1 \mapsto t_1, \ldots, x_n \mapsto t_n \}$, with $t_i \in T_{\text{sort}(x_i)}(\Sigma, \mathcal{X})$, then $s \sigma = t \sigma \in I_E(\gamma)(s)$ and $t \sigma \in I_E(\gamma)(t)$. By the Instance rule, $E \Rightarrow^* s \sigma \approx t \sigma$ is derivable, hence $I_E(\gamma)(s) = [s \sigma] = [t \sigma] = I_E(\gamma)(t)$. \square

Lemma 4.1.10 (\Rightarrow^*_E is complete). Let \mathcal{X} be a countably infinite set of variables; let $s, t \in T_S(\Sigma, \mathcal{X})$. If $I_E = \forall \bar{x}(s \approx t)$, then $E \Rightarrow^*_E s \approx t$ is derivable.

Proof. Assume that $I_E = \forall \bar{x}(s \approx t)$, i.e., $I_E(\beta)(\forall \bar{x}(s \approx t)) = 1$. Consequently, $I_E(\gamma)(s) = I_E(\gamma)(t)$ for all $\gamma = \beta[x_i \mapsto [t_i] \mid 1 \leq i \leq n]$ with $[t_i] \in \text{sort}(x_i)^{I_E}$. Choose $t_i = x_i$, then $[s] = I_E(\gamma)(s) = I_E(\gamma)(t) = [t]$, so $E \Rightarrow^* s \approx t$ is derivable by definition of I_E. \square

Theorem 4.1.11 (Birkhoff’s Theorem). Let \mathcal{X} be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_S(\Sigma, \mathcal{X})$:

1. $s \leftrightarrow^*_E t$.
2. $E \Rightarrow^*_E s \approx t$ is derivable.
3. $s \approx_E t$, i.e., $E = \forall \bar{x}(s \approx t)$.
4. $I_E = \forall \bar{x}(s \approx t)$.
4.2. CRITICAL PAIRS

Proof. (1.) ⇔ (2.): Lemma 4.1.5.
(2.) ⇒ (3.): By induction on the size of the derivation for \(E \Rightarrow^* s \approx t \).
(3.) ⇒ (4.): Obvious, since \(I_E = T(\Sigma, \mathcal{X}) / E \) is an \(E \)-algebra.
(4.) ⇒ (2.): Lemma 4.1.10. \(\Box \)

Universal Algebra

\(T(\Sigma, \mathcal{X}) / E = T(\Sigma, \mathcal{X}) / \approx_E = T(\Sigma, \mathcal{X}) / \leftrightarrow_E^+ \)

is called the free \(E \)-algebra with generating set \(\mathcal{X} / \approx_E = \{ [x] \mid x \in \mathcal{X} \} \): Every mapping \(\phi : \mathcal{X} / \approx_E \to \mathcal{B} \)

for some \(E \)-algebra \(\mathcal{B} \)

can be extended to a homomorphism \(\phi : T(\Sigma, \mathcal{X}) / E \to \mathcal{B} \).

\(T(\Sigma, \emptyset) / E = T(\Sigma, \emptyset) / \approx_E = T(\Sigma, \emptyset) / \leftrightarrow_E^+ \)

is called the initial \(E \)-algebra.

\(\approx_E = \{ (s, t) \mid E \models s = t \} \)

is called the equational theory of \(E \).

\(\approx_E^\dagger = \{ (s, t) \mid T(\Sigma, \emptyset) / E \models s = t \} \)

is called the inductive theory of \(E \).

Example 4.1.12. Let \(E = \{ \forall x(x + 0 \approx x), \forall x\forall y(x + s(y) \approx s(x + y)) \} \). Then \(x + y \approx_E^\dagger y + x \), but \(x + y \not\approx_E y + x \).

4.2 Critical Pairs

By Theorem 4.1.11 the semantics of \(E \) and \(\leftrightarrow_E^+ \) coincide. In order to decide \(\leftrightarrow_E^+ \) we need to turn \(\rightarrow_E^+ \) in a confluent and terminating relation. If \(\leftrightarrow_E^+ \) is terminating then confluence is equivalent to local confluence, see Newman’s Lemma, Lemma 1.6.6. Local confluence is the following problem for TRS: if \(t_1 \leftarrow_{E} t_0 \rightarrow_{E} t_2 \), does there exist a term \(s \) so that \(t_1 \rightarrow_{E} s \leftarrow_{E} t_2 \)? If the two rewrite steps happen in different subtrees (disjoint redexes) then a repetition of the respective other step yields the common term \(s \). If the two rewrite steps happen below each other (overlap at or below a variable position) again a repetition of the respective other step yields the common term \(s \). If the left-hand sides of the two rules overlap at a non-variable position there is no obvious way to generate \(s \).

More technically two rewrite rules \(l_1 \rightarrow r_1 \) and \(l_2 \rightarrow r_2 \) overlap if there exist some non-variable subterm \(l_1|_p \) such that \(l_2 \) and \(l_1|_p \) have a common instance \((l_1|_p)[\sigma_1 = \sigma_2] \). If the two rewrite rules do not have common variables, then only a single substitution is necessary, the mgu \(\sigma \) of \((l_1|_p) \) and \(l_2 \).

Definition 4.2.1 (Critical Pair). Let \(l_i \rightarrow r_i \) (\(i = 1, 2 \)) be two rewrite rules in a TRS \(R \) without common variables, i.e., \(\text{vars}(l_1) \cap \text{vars}(l_2) = \emptyset \). Let \(p \in \text{pos}(l_1) \) be a position so that \(l_1|_p \) is not a variable and \(\sigma \) is an mgu of \(l_1|_p \) and \(l_2 \). Then \(r_1 \sigma \leftarrow l_1 \sigma \rightarrow (l_1 \sigma)[r_2 \sigma]|_p \). \((r_1 \sigma, (l_1 \sigma)[r_2 \sigma]|_p) \) is called a critical pair of \(R \). The critical pair is joinable (or: converges), if \(r_1 \sigma \downarrow_R (l_1 \sigma)[r_2 \sigma]|_p \).

Recall that \(\text{vars}(l_i) \supseteq \text{vars}(r_i) \) for the two rewrite rules by Definition 4.1.1. Furthermore, the definition of the rule includes overlaps of a rule with itself. Such overlaps on top-level are always joinable.
Theorem 4.2.2 ("Critical Pair Theorem"). A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof. (\Rightarrow) Obvious, since joinability of a critical pair is a special case of local confluence.

(\Leftarrow) Suppose s rewrites to t_1 and t_2 using rewrite rules $l_i \rightarrow r_i \in R$ at positions $p_i \in \text{pos}(s)$, where $i = 1, 2$. The two rules are variable disjoint, hence $s|_{p_i} = l_i \sigma$ and $t_i = s[r_i \sigma|_p]$. There are two cases to be considered:

1. Either p_1 and p_2 are in disjoint subtrees ($p_1 \parallel p_2$) or
2. one is a prefix of the other (w.l.o.g., $p_1 \leq p_2$).

Case 1: $p_1 \parallel p_2$. Then $s = s[l_1 \sigma]|_{p_1} [l_2 \sigma]|_{p_2}$, and therefore $t_1 = s[r_1 \sigma]|_{p_1} [r_2 \sigma]|_{p_2}$ and $t_2 = s[l_1 \sigma]|_{p_1} [r_2 \sigma]|_{p_2}$. Let $t_0 = s[r_1 \sigma]|_{p_1} [r_2 \sigma]|_{p_2}$. Then clearly $t_1 \rightarrow_R t_0$ using $l_2 \rightarrow r_2$ and $t_2 \rightarrow_R t_0$ using $l_1 \rightarrow r_1$.

Case 2: $p_1 \leq p_2$.

Case 2.1: $p_2 = p_1 q_1 q_2$, where $l_1|_{q_1}$ is some variable x. In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in l_1 and n times in r_1 (where $m \geq 1$ and $n \geq 0$). Then $l_1\rightarrow_R l_1$ by applying $l_2 \rightarrow r_2$ at all positions $p_1 q_1 q_2$, where q is a position of x in r_1. Conversely, $t_2 \rightarrow_R t_0$ by applying $l_2 \rightarrow r_2$ at all positions $p_1 q_2$, where q is a position of x in l_1 different from q_1, and by applying $l_1 \rightarrow r_1$ at p_1 with the substitution σ', where $\sigma' = \sigma[x \mapsto (x\sigma)|_{r_2 \sigma}|_{q_2}]$.

Case 2.2: $p_2 = p_1 p$, where p is a non-variable position of l_1. Then $s|_{p_2} = l_2 \sigma$ and $s|_{p_2} = (s|_{p_1})|_p = (l_1 \sigma)|_p = (l_1|_p)\sigma$, so σ is a unifier of l_2 and $l_1|_p$. Let σ' be the mgu of l_2 and $l_1|_p$, then $\sigma = \tau \circ \sigma'$ and $(l_1 \sigma')|(r_2 \sigma')|_p$ is a critical pair. By assumption, it is joinable, so $r_1 \sigma' \rightarrow_R \tau \leftarrow_{\tau} (l_1 \sigma')|(r_2 \sigma')|_p$. Consequently, $t_1 = s[r_1 \sigma]|_{p_1} = s[r_1 \sigma]|_{p_1} \rightarrow_{\tau} s[v\tau]|_{p_1}$ and $t_2 = s[r_2 \sigma]|_{p_2} = s[l_1 \sigma]|_{p_1} = s[l_1 \sigma|(r_2 \sigma')|_p] = s[l_1 \sigma|(r_2 \sigma')|_p] \rightarrow_{\tau} s[v\tau]|_{p_1}$.

Please note that critical pairs between a rule and (a renamed variant of) itself must be considered, except if the overlap is at the root, i.e., $p = \epsilon$, because this critical pair always joins.

Corollary 4.2.3. A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Proof. By the Theorem 4.2.2 and because every locally confluent and terminating relation \rightarrow is confluent, Newman’s Lemma, Lemma 1.6.6.

Corollary 4.2.4. For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule there is at most one critical pair (u_1, u_2). Reduce every u_i to some normal form u_i'. If $u'_i = u'_i$ for every critical pair, then R is confluent, otherwise there is some non-confluent situation $u'_1 \rightarrow_R u_1 \leftarrow_R s \rightarrow_R u_2 \rightarrow_R u'_2$. \qed