
Chapter 5

First-Order Logic With
Equality

In this Chapter I combine the ideas of Superposition for first-order logic with-
out equality, Section 3.13, and Knuth-Bendix Completion, Section 4.4, to get a
calculus for equational clauses. In Section 3.1 I already argued that any literal
can be represented by an equation by “moving predicates to functions” and
introducing a new sort Bool with specific constant true that is minimal in any
considered ordering.

P (t1, . . . , tn) ⇒ fP (t1, . . . , tn) ≈ true
¬P (t1, . . . , tn) ⇒ fP (t1, . . . , tn) ̸≈ true

The concentration on equational literals eases notation as I will show below. The
constant true is minimal in the ordering, so the left hand side of a transformed
literal is always strictly maximal. The freshly introduced functions fP only occur
at top level of a term, so a critical pair overlap between two such functions
corresponds exactly to a Superposition Left (resolution) or Factoring inference
of the superposition calculus for first-order logic without equality. Note that
a literal true ̸≈ true can be simplified to ⊥ and a literal true ≈ true to ⊤,
respectively. So from now on I only consider equational clauses, i.e., there are
no predicate symbols, Π = ∅.

Inference rules are to be read modulo symmetry of the equality symbol.
First, I explain the ideas and motivations behind the superposition calculus
with equality and its completeness proof for the ground case. At start I do
not consider selection, it will be eventually added in the obvious way when
considering clauses with variables.

The running example for this chapter is the theory of arrays TArray, see also
Section 7.3, which consists of the following three axioms:

∀xA, yI , zV . read(store(x, y, z), y) ≈ z
∀xA, yI , y′I , zV .(y ̸≈ y′ → read(store(x, y, z), y′) ≈ read(x, y′))

∀xA, x′A.∃yI .(read(x, y) ̸≈ read(x′, y) ∨ x ≈ x′).

247



248 CHAPTER 5. FIRST-ORDER LOGIC WITH EQUALITY

The goal is to decide for an additional set of ground clauses N over the above
signature plus further constants of the three different sorts, whether TArray ∪
N is satisfiable. I will show that superposition can be turned into a decision
procedure for this problem, following [?]. The superposition calculus including
some array specific refinements, will always terminate on a clause set TArray∪N .
This results in an alternative decision procedure compared to the instantiation-
based procedures used in the SMT (Satisfiability Modulo Theories) context, see
Section 7.3.

5.1 Ground Superposition

The idea of the superposition calculus without equality was to restrict inferences
to maximal literals, Section 3.13. Knuth-Bendix completion considers critical
pairs between maximal sides of equations, Section 4.4. Superposition on equa-
tional clauses combines the two restrictions: inferences are between maximal
left hand sides of maximal literals in the respective clauses. Since all considered
orderings are total on ground terms, they maximality conditions can be stated
positively.

The ground inference rules corresponding to Knuth-Bendix critical pair com-
putation generalized to clauses. Superposition Left on first-order logic without
equality is generalized to equational clauses an inferences below top atom posi-
tions. Then the ordering construction of Definition 3.12.1 is lifted to equational
clauses. The multiset {s, t} is assigned to a positive literal s ≈ t, the multiset
{s, s, t, t} is assigned to a negative literal s ̸≈ t. The literal ordering ≻L com-
pares these multisets using the multiset extension of ≻. The clause ordering
≻C compares clauses by comparing their multisets of literals using the multiset
extension of ≻L. Eventually ≻ is used for all three orderings depending on the
context.

Superposition Left (N ⊎ {D ∨ t ≈ t′, C ∨ s[t] ̸≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[t] ̸≈ s′} ∪ {D ∨ C ∨ s[t′] ̸≈ s′})
where t ≈ t′ is strictly maximal and s ̸≈ s′ is maximal in their respective clauses,
t ≻ t′, s ≻ s′

Superposition Right (N ⊎ {D ∨ t ≈ t′, C ∨ s[t] ≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[t] ≈ s′} ∪ {D ∨ C ∨ s[t′] ≈ s′})
where t ≈ t′ and s ≈ s′ are strictly maximal in their respective clauses, t ≻ t′,
s ≻ s′

The two rules are not yet sufficient to obtain completeness. There is no rule
corresponding to Factoring and there is no way to apply reflexivity of equality,
i.e., refute negative equations. The latter is solved by the below rule Equality
Resolution.

Equality Resolution (N⊎{C∨s ̸≈ s}) ⇒SUPE (N∪{C∨s ̸≈ s}∪{C})
where s ̸≈ s is maximal in the clause



5.2. SUPERPOSITION 249

Similar to Factoring on ground clauses, Equality Resolution is also a sim-
plification on ground clauses, i.e., the parent clause becomes redundant with
respect to the result of the derivation step. Once Equality Resolution is lifted to
clauses with variables this is no longer the case, because the applied substitution
may instantiate further literals in C.

It turns out that a direct adaption of the Factoring rule from superposition
for first-order logic without equality is not sufficient for completeness. This be-
comes obvious in the context of the model construction. Basically, for the model
construction the same ideas as in the completeness proof for superposition with-
out equality apply, see Section 3.13. However, a Herbrand interpretation does
not work for equality: the equality symbol ≈ must be interpreted by equality
in the interpretation. The solution is to define a set E of ground equations and
take T (Σ, ∅)/E = T (Σ, ∅)/≈E as the universe. Then two ground terms s and
t are equal in the interpretation if and only if s ≈E t. If E is a terminating
and confluent rewrite system R, then two ground terms s and t are equal in the
interpretation, if and only if s ↓R t.

Now the problem with the standard factoring rule is that in the completeness
proof for the superposition calculus without equality, the following property
holds: if C = C ′ ∨ A with a strictly maximal atom A is false in the current
interpretation NC with respect to some clause set, see Definition 3.12.5, then
adding A to the current interpretation cannot make any literal in C ′ true. This
does not hold anymore in the presence of equality. Let b ≻ c ≻ d. Assume that
the current rewrite system (representing the current interpretation) contains
the rule c → d. Now consider the clause b ≈ c ∨ b ≈ d where b ≈ c is strictly
maximal. A further needed inference rule to deal with clauses of this kind, is the
below Equality Factoring rule, a generalization of the non-equational Factoring
rule.

Equality Factoring (N ⊎ {C ∨ s ≈ t′ ∨ s ≈ t}) ⇒SUPE (N ∪ {C ∨ s ≈
t′ ∨ s ≈ t} ∪ {C ∨ t ̸≈ t′ ∨ s ≈ t′})
where s ≻ t′, s ≻ t and s ≈ t is maximal in the clause

5.2 Superposition

The lifting from the ground case to the first-order case with variables is then
identical to the case of superposition without equality: identity is replaced by
unifiability, the mgu is applied to the resulting clause, and ≻ is replaced by
̸⪯. In addition, as in Knuth-Bendix completion, overlaps at or below a variable
position are not considered. The consequence is that there are inferences between
ground instances Dσ and Cσ of clauses D and C which are not ground instances
of inferences between D and C. Such inferences have to be treated in a special
way in the completeness proof and will be shown to be obsolete.

Until now I mostly described the ideas behind the superposition calculus
and its completeness proof. Now, precise definitions and proofs will be given.



250 CHAPTER 5. FIRST-ORDER LOGIC WITH EQUALITY

Inference rules are applied with respect to the commutativity of equality ≈.
Selection of negative literals is considered as well.

Superposition Right (N ⊎ {D ∨ t ≈ t′, C ∨ s[u] ≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[u] ≈ s′} ∪ {(D ∨ C ∨ s[t′] ≈ s′)σ})
where σ is the mgu of t, u, the term u is not a variable, tσ ̸⪯ t′σ, sσ ̸⪯ s′σ,
(t ≈ t′)σ strictly maximal in (D ∨ t ≈ t′)σ, nothing is selected in D ∨ t ≈ t′,
and (s ≈ s′)σ is strictly maximal in (C ∨ s ≈ s′)σ and nothing is selected in
C ∨ s ≈ s′

Superposition Left (N ⊎ {D ∨ t ≈ t′, C ∨ s[u] ̸≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[u] ̸≈ s′} ∪ {(D ∨ C ∨ s[t′] ̸≈ s′)σ})
where σ is the mgu of t, u, the term u is not a variable, tσ ̸⪯ t′σ, sσ ̸⪯ s′σ,
(t ≈ t′)σ is strictly maximal in (D ∨ t ≈ t′)σ, nothing is selected in D ∨ t ≈ t′,
and (s ̸≈ s′)σ is maximal in (C ∨ s ̸≈ s′)σ or selected

Equality Resolution (N ⊎ {C ∨ s ̸≈ s′}) ⇒SUPE (N ∪ {C ∨ s ̸≈
s′} ∪ {Cσ})
where σ is the mgu of s, s′, (s ̸≈ s′)σ maximal in (C ∨ s ̸≈ s′)σ or selected

Equality Factoring (N ⊎ {C ∨ s′ ≈ t′ ∨ s ≈ t}) ⇒SUPE (N ∪ {C ∨ s′ ≈
t′ ∨ s ≈ t} ∪ {(C ∨ t ̸≈ t′ ∨ s ≈ t′)σ})
where σ is the mgu of s, s′, s′σ ̸⪯ t′σ, sσ ̸⪯ tσ, (s ≈ t)σ maximal in (C ∨ s′ ≈
t′ ∨ s ≈ t)σ and nothing selected

Proving soundness of the rules is not difficult, completeness, however, re-
quires a non-trivial proof.

Theorem 5.2.1 (Superposition Soundness). All inference rules of the su-
perposition calculus are sound, i.e., for every rule N ⊎ {C1, . . . , Cn} ⇒ N ∪
{C1, . . . , Cn} ∪ {D} it holds that {C1, . . . , Cn} |= D.

The notion of redundancy does not change, i.e., a clause is redundant if it is
implied by smaller clauses.

Definition 5.2.2 (Abstract Redundancy). A clause C is redundant with respect
to a clause set N if for all ground instances Cσ there are clauses {C1, . . . , Cn} ⊆
N with ground instances C1τ1, . . . , Cnτn such that Ciτi ≺ Cσ for all i and
C1τ1, . . . , Cnτn |= Cσ.

Given a set N of clauses red(N) is the set of clauses redundant with respect
to N .

The superposition calculus for first-order logic with equality is a general-
ization of the superposition calculus for first-order logic wihtout equality, Sec-
tion 3.13. Hence the concrete redundancy notions from Section 3.13, namely
Subsumption, Tautology Deletion, Condensation, and Subsumption Resolution



5.2. SUPERPOSITION 251

all apply to the superposition calculus for first-order logic with equality as well.
In case of equations, the before mentioned criteria are tested with respect to
the commutativity of equality. In addition, unit rewriting is also an instance of
the abstract redundancy notion, Definition 5.2.2.

Variable Substi-
tution

(N ⊎ {C ∨ x ̸≈ t}) ⇒SUPE (N ∪ {C{x 7→ t}})

provided x ̸∈ vars(t)

Unit Rewriting (N ⊎ {C ∨ L, t ≈ s}) ⇒SUPE (N ∪ {C ∨ L[sσ]p, t ≈ s})
provided L|p = tσ and tσ ≻ sσ

Definition 5.2.3 (Saturation). A clause set N is saturated up to redundancy
if for every derivation N \ red(N)⇒SUPE N ∪ {C} it holds C ∈ (N ∪ red(N)).

For a set E of ground equations, T (Σ, ∅)/E is an E-interpretation (or E-
algebra) with universe {[t] | t ∈ T (Σ, ∅)}. Then for every ground equation s ≈ t,
T (Σ, ∅)/E |= s ≈ t holds if and only if s↔∗

E t, see Theorem 4.1.11. In particular,
if E is a convergent set of rewrite rules R and s ≈ t is a ground equation, then
T (Σ, ∅)/R |= s ≈ t if and only if s ↓R t. An equation or clause is valid (or true)
in R if and only if it is true in T (Σ, ∅)/R.

Definition 5.2.4 (Partial Model Construction). Given a clause set N and an
ordering ≻ a (partial) model NI can be constructed inductively over all ground
clause instances of N as follows:

NC :=
⋃D∈grd(Σ,N)
D≺C ED

ED :=



{s ≈ t} if D = D′ ∨ s ≈ t,
(i) s ≈ t is strictly maximal in D

(ii) s ≻ t
(iii) D is false in ND

(iv) D′ is false in ND ∪ {s→ t}
(v) s is irreducible by ND

(vi) no negative literal is selected in D′

∅ otherwise

NI :=
⋃
C∈grd(Σ,N)NC

where ND, NI , ED are also considered as rewrite systems with respect to ≻. If
ED ̸= ∅ then D is called productive.

Lemma 5.2.5 (Maximal Terms in Productive Clauses). If EC = {s → t} and
ED = {l→ r}, then s ≻ l if and only if C ≻ D.

Corollary 5.2.6 (Partial Models are Convergent Rewrite Systems). The
rewrite systems NC and NI are convergent.


