
5.2. SUPERPOSITION 251

all apply to the superposition calculus for first-order logic with equality as well.
In case of equations, the before mentioned criteria are tested with respect to
the commutativity of equality. In addition, unit rewriting is also an instance of
the abstract redundancy notion, Definition 5.2.2.

Variable Substi-
tution

(N ⊎ {C ∨ x ̸≈ t}) ⇒SUPE (N ∪ {C{x 7→ t}})

provided x ̸∈ vars(t)

Unit Rewriting (N ⊎ {C ∨ L, t ≈ s}) ⇒SUPE (N ∪ {C ∨ L[sσ]p, t ≈ s})
provided L|p = tσ and tσ ≻ sσ

Definition 5.2.3 (Saturation). A clause set N is saturated up to redundancy
if for every derivation N \ red(N)⇒SUPE N ∪ {C} it holds C ∈ (N ∪ red(N)).

For a set E of ground equations, T (Σ, ∅)/E is an E-interpretation (or E-
algebra) with universe {[t] | t ∈ T (Σ, ∅)}. Then for every ground equation s ≈ t,
T (Σ, ∅)/E |= s ≈ t holds if and only if s↔∗

E t, see Theorem 4.1.11. In particular,
if E is a convergent set of rewrite rules R and s ≈ t is a ground equation, then
T (Σ, ∅)/R |= s ≈ t if and only if s ↓R t. An equation or clause is valid (or true)
in R if and only if it is true in T (Σ, ∅)/R.

Definition 5.2.4 (Partial Model Construction). Given a clause set N and an
ordering ≻ a (partial) model NI can be constructed inductively over all ground
clause instances of N as follows:

NC :=
⋃D∈grd(Σ,N)
D≺C ED

ED :=

{s ≈ t} if D = D′ ∨ s ≈ t,
(i) s ≈ t is strictly maximal in D

(ii) s ≻ t
(iii) D is false in ND

(iv) D′ is false in ND ∪ {s→ t}
(v) s is irreducible by ND

(vi) no negative literal is selected in D′

∅ otherwise

NI :=
⋃
C∈grd(Σ,N)NC

where ND, NI , ED are also considered as rewrite systems with respect to ≻. If
ED ̸= ∅ then D is called productive.

Lemma 5.2.5 (Maximal Terms in Productive Clauses). If EC = {s → t} and
ED = {l→ r}, then s ≻ l if and only if C ≻ D.

Corollary 5.2.6 (Partial Models are Convergent Rewrite Systems). The
rewrite systems NC and NI are convergent.

252 CHAPTER 5. FIRST-ORDER LOGIC WITH EQUALITY

Proof. Obviously, s ≻ t for all rules s → t in NC and NI . Furthermore, it is
easy to check that there are no critical pairs between any two rules: Assume that
there are rules l → r in ED and s → t in EC so that l is a subterm of s. As ≻
is a reduction ordering that is total on ground terms, l ≺ s holds and therefore
D ≺ C and ED ⊆ NC . But then s would be reducible by NC , contradicting
condition Definition 5.2.4 (v).

Lemma 5.2.7 (Ordering Consequences in Productive Clauses). If D ⪯ C and
EC = {s→ t}, then s ≻ r for every term r occurring in a negative literal in D
and s ⪰ l for every term l occurring in a positive literal in D.

Corollary 5.2.8 (Model Monotonicity True Clauses). If D is true in ND, then
D is true in NI and NC for all C ≻ D.

Proof. If a positive literal of D is true in ND, then this is obvious. Otherwise,
some negative literal s ̸≈ t of D must be true in ND, hence s ̸↓ND

t. As the
rules in NI \ND have left-hand sides that are larger than s and t, they cannot
be used in a rewrite proof of s ↓ t, hence s ̸↓NC

t and s ̸↓NI t.

Corollary 5.2.9 (Model Monotonicity False Clauses). If D = D′ ∨ s ≈ t is
productive, then D′ is false and D is true in NI and NC for all C ≻ D.

Proof. Obviously, D is true in NI and NC for all C ≻ D. Since all negative
literals of D′ are false in ND, it is clear that they are false in NI and NC .
For the positive literals s′ ≈ t′ of D′, condition Definition 5.2.4 (iv) ensures
that they are false in ND ∪ {s → t}. Since s′ ⪯ s and t′ ⪯ s and all rules in
NI \ND have left-hand sides that are larger than s, these rules cannot be used
in a rewrite proof of s′ ↓ t′, hence s′ ̸↓NC

t′ and s′ ̸↓NI t
′.

Lemma 5.2.10 (Lifting Single Clause Inferences). Let C be a clause and let
σ be a substitution such that Cσ is ground. Then every equality resolution or
equality factoring inference from Cσ is a ground instance of an inference from
C.

Lemma 5.2.11 (Lifting Two Clause Inferences). Let D = D′ ∨ u ≈ v and
C = C ′ ∨ [¬]s ≈ t be two clauses (without common variables) and let σ be
a substitution such that Dσ and Cσ are ground. If there is a superposition
inference between Dσ and Cσ where uσ and some subterm of sσ are overlapped
and uσ does not occur in sσ at or below a variable position of s then the
inference is a ground instance of a superposition inference from D and C.

For the below theorem and the rest of the chapter I assume that clauses are
variable disjoint and unifiers are idempotent.

Theorem 5.2.12 (Model Construction). Let N be a set of clauses that is
saturated up to redundancy and does not contain the empty clause. Then for
every ground clause Cσ ∈ grd(Σ, N) it holds that:

1. ECσ = ∅ if and only if Cσ is true in NCσ.

5.2. SUPERPOSITION 253

2. If Cσ is redundant with respect to grd(Σ, N) then it is true in NCσ.

3. Cσ is true in NI and in ND for every D ∈ grd(Σ, N) with D ≻ Cσ.

Proof. The proof does not consider selection. The proof is by induction on the
clause ordering ≻ and with the induction hypothesis that 1.–3. are already
satisfied for all clauses in grd(Σ, N) that are smaller than Cσ. Note that the
“if” part of 1. is obvious from the construction and that condition 3. follows
immediately from 1. and Corollaries 5.2.8 and 5.2.9. So it remains to show
condition 2. and the “only if” part of 1.

(Condition 2) Case Cσ is redundant with respect to grd(Σ, N): If Cσ is redun-
dant with respect to grd(Σ, N), then it follows from clauses in grd(Σ, N) that
are smaller than Cσ. By part 3. of the induction hypothesis, these clauses are
true in NCσ. Hence Cσ is true in NCσ.

(Condition 1) If ECσ = ∅ then Cσ is true in NCσ.

(Condition 1.1) Case xσ is reducible by NCσ: Suppose there is a variable x
occurring in C so that xσ is reducible by NCσ, say xσ →NCσ

w. Let the sub-
stitution σ′ be defined by xσ′ = w and yσ′ = yσ for every variable y ̸≈ x. The
clause Cσ′ is smaller than Cσ. By part 3. of the induction hypothesis, it is true
in NCσ. By congruence, every literal of Cσ is true in NCσ if and only if the
corresponding literal of Cσ′ is true in NCσ; hence Cσ is true in NCσ.

(Condition 1.2) Case Cσ contains a maximal negative literal: Suppose that Cσ
does not fall into Condition 2 and Condition 1.1 and that Cσ = C ′σ∨sσ ̸≈ s′σ,
where sσ ̸≈ s′σ is maximal in Cσ. If sσ ≈ s′σ is false in NCσ, then Cσ is clearly
true in NCσ and this part of the proof is done. So assume that sσ ≈ s′σ is true
in NCσ, that is, sσ ↓NCσ

s′σ. without loss of generality, sσ ⪰ s′σ.

(Condition 1.2.1) Case sσ = s′σ: If sσ = s′σ, then there is an equality resolution
inference N ⊎{C ′σ∨sσ ̸≈ s′σ} ⇒SUPE N ∪{C ′σ∨sσ ̸≈ s′σ}∪{C ′σ}. As shown
in the Lifting Lemma, this is an instance of an equality resolution inference
N ⊎ {C ′ ∨ s ̸≈ s′} ⇒SUPE N ∪ {C ′ ∨ s ̸≈ s′} ∪ {C ′θ} where C = C ′ ∨ s ̸≈ s′ is
contained inN and σ = θ◦ρ. without loss of generality, θ is idempotent, therefore
C ′σ = C ′θρ = C ′θθρ = C ′θσ, so C ′σ is a ground instance of C ′θ. Since Cσ is
not redundant with respect to grd(Σ, N), C is not redundant with respect to N .
As N is saturated up to redundancy, the conclusion C ′θ of the inference from C
is contained in N ∪ red(N). Therefore, C ′σ is either contained in grd(Σ, N) and
smaller than Cσ, or it follows from clauses in grd(Σ, N) that are smaller than
itself (and therefore smaller than Cσ). By the induction hypothesis, clauses in
grd(Σ, N) that are smaller than Cσ are true in NCσ, thus C

′σ and Cσ are true
in NCσ.

(Condition 1.2.2) Case sσ ≻ s′σ: If sσ ↓NCσ
s′σ and sσ ≻ s′σ, then sσ must

be reducible by some rule in some EDσ ⊆ NCσ. Let Dσ = D′σ ∨ tσ ≈ t′σ
with EDσ = {tσ → t′σ}. Since Dσ is productive, D′σ is false in NCσ. Besides,
by part 2. of the induction hypothesis, Dσ is not redundant with respect to

254 CHAPTER 5. FIRST-ORDER LOGIC WITH EQUALITY

grd(Σ, N), so D is not redundant with respect to N . Note that tσ cannot oc-
cur in sσ at or below a variable position of s, say xσ = w[tσ], since otherwise
Cσ would be subject to Case 1.1 above. Consequently, the left superposition
inference N ⊎ {D′σ ∨ tσ ≈ t′σ,C ′σ ∨ sσ[tσ] ̸≈ s′σ} ⇒SUPE N ∪ {D′σ ∨ tσ ≈
t′σ,C ′σ ∨ sσ[tσ] ̸≈ s′σ} ∪ {D′σ ∨C ′σ ∨ sσ[t′σ] ̸≈ s′σ} is a ground instance of a
left superposition inference from D and C. By saturation up to redundancy, its
conclusion is either contained in grd(Σ, N) and smaller than Cσ, or it follows
from clauses in grd(Σ, N) that are smaller than itself (and therefore smaller
than Cσ). By the induction hypothesis, these clauses are true in NCθ, thus
D′σ ∨ C ′σ ∨ sσ[t′σ] ̸≈ s′σ is true in NCσ. Since D

′σ and sσ[t′σ] ̸≈ s′σ are false
in NCσ, both C

′σ and Cσ must be true.

(Condition 1.3) Case Cσ does not contain a maximal negative literal: Suppose
that Cσ does not fall into Cases 1.1 and 1.2. Then Cσ can be written as C ′σ ∨
sσ ≈ s′σ, where sσ ≈ s′σ is a maximal literal of Cσ. If ECσ = {sσ → s′σ} or
C ′σ is true in NCσ or sσ = s′σ, then there is nothing to show, so assume that
ECσ = ∅ and that C ′σ is false in NCθ. without loss of generality, sσ ≻ s′σ.

(Condition 1.3.1) Case sσ ≈ s′σ is maximal in Cσ, but not strictly maximal: If
sσ ≈ s′σ is maximal in Cσ, but not strictly maximal, then Cσ can be written
as C ′′σ ∨ tσ ≈ t′σ ∨ sσ ≈ s′σ, where tσ = sσ and t′σ = s′σ. In this case,
there is a equality factoring inference N ⊎ {C ′′σ ∨ tσ ≈ t′σ ∨ sσ ≈ s′σ} ⇒SUPE

N∪{C ′′σ∨tσ ≈ t′σ∨sσ ≈ s′σ}∪{C ′′σ∨t′σ ̸≈ s′σ∨tσ ≈ t′σ}. This inference is a
ground instance of an inference from C. By induction hypothesis, its conclusion
is true in NCσ. Trivially, t

′σ = s′σ implies t′σ ↓NCσ
s′σ, so t′σ ̸≈ s′σ must be

false and Cσ must be true in NCσ.

(Condition 1.3.2) Case sσ ≈ s′σ is strictly maximal in Cσ and sσ is reducible:
Suppose that sσ ≈ s′σ is strictly maximal in Cσ and sσ is reducible by some
rule in EDσ ⊆ NCσ. Let Dσ = D′σ ∨ tσ ≈ t′σ and EDσ = {tσ → t′σ}.
Since Dσ is productive, Dσ is not redundant and D′σ is false in NCσ. Now
proceed in essentially the same way as in Case 1.2.2: If tσ occurred in sσ at or
below a variable position of s, say xσ = w[tσ], then Cσ would be subject to
Case 1.1 above. Otherwise, the right superposition inference N ⊎ {D′σ ∨ tσ ≈
t′σ,C ′σ∨sσ[tσ] ≈ s′σ} ⇒SUPE N∪{D′σ∨tσ ≈ t′σ,C ′σ∨sσ[tσ] ≈ s′σ}∪{D′σ∨
C ′σ∨ sσ[t′σ] ≈ s′σ} is a ground instance of a right superposition inference from
D and C. By saturation up to redundancy, its conclusion is true in NCσ. Since
D′σ and C ′σ are false in NCσ, sσ[t

′σ] ≈ s′σ must be true in NCσ. On the other
hand, tσ ≈ t′σ is true in NCσ, so by congruence, sσ[tσ] ≈ s′σ and Cσ are true
in NCσ.

(Condition 1.3.3) Case sσ ≈ s′σ is strictly maximal in Cσ and sσ is irreducible:
Suppose that sσ ≈ s′σ is strictly maximal in Cσ and sσ is irreducible by
NCσ. Then there are three possibilities: Cσ can be true in NCσ, or C

′σ can be
true in NCσ ∪ {sσ → s′σ}, or ECσ = {sσ → s′σ}. In the first and the third
case, there is nothing to show. Therefore assume that Cσ is false in NCσ and
C ′σ is true in NCσ ∪ {sσ → s′σ}. Then C ′σ = C ′′σ ∨ tσ ≈ t′σ, where the

5.2. SUPERPOSITION 255

literal tσ ≈ t′σ is true in NCσ ∪ {sσ → s′σ} and false in NCσ. In other words,
tσ ↓NCσ∪{sσ→s′σ} t′σ, but not tσ ↓NCσ

t′σ. Consequently, there is a rewrite
proof of tσ →∗ u ∗← t′σ by NCσ ∪ {sσ → s′σ} in which the rule sσ → s′σ
is used at least once. Without loss of generality assume that tσ ⪰ t′σ. Since
sσ ≈ s′σ ≻ tσ ≈ t′σ and sσ ≻ s′σ it can be concluded that sσ ⪰ tσ ≻ t′σ.
But then there is only one possibility how the rule sσ → s′σ can be used in
the rewrite proof: sσ = tσ must hold and the rewrite proof must have the form
tσ → s′σ →∗ u ←∗ t′σ, where the first step uses sσ → s′σ and all other steps
use rules from NCσ. Consequently, s

′σ ≈ t′σ is true in NCσ. Now observe that
there is an equality factoring inference N ⊎{C ′′σ ∨ tσ ≈ t′σ ∨ sσ ≈ s′σ} ⇒SUPE

N ∪{C ′′σ∨tσ ≈ t′σ∨sσ ≈ s′σ}∪{C ′′σ∨t′σ ̸≈ s′σ∨tσ ≈ t′σ} whose conclusion
is true in NCσ by saturation. Since the literal t′σ ̸≈ s′σ must be false in NCσ, the
rest of the clause must be true in NCσ, and therefore Cσ must be true in NCσ,
contradicting the assumption. This concludes the proof of the theorem.

Lemma 5.2.13 (Lifting Models). Let N be a set of clauses with variables and
let A be a term-generated Σ-algebra. Then A is a model of grd(Σ, N) if and
only if it is a model of N .

Proof. (⇒) Let A |= grd(Σ, N); let (∀x⃗C) ∈ N . Then A |= ∀x⃗C iff A(γ[xi 7→
ai])(C) = 1 for all γ and ai. Choose ground terms ti such that A(γ)(ti) = ai;
define σ such that xiσ = ti, thenA(γ[xi 7→ ai])(C) = A(γ◦σ)(C) = A(γ)(Cσ) =
1 since Cσ ∈ GΣ(N).

(⇐) Let A be a model of N ; let C ∈ N and Cσ ∈ GΣ(N). Then A(γ)(Cσ) =
A(γ ◦ σ)(C) = 1 since A |= N .

Theorem 5.2.14 (Refutational Completeness: Static View). Let N be a set of
clauses that is saturated up to redundancy. Then N has a model if and only if
N does not contain the empty clause.

Proof. If ⊥ ∈ N , then obviously N does not have a model. If ⊥ ̸∈ N , then the
interpretation NI (that is, T (Σ, ∅)/NI) is a model of all ground instances in
grd(Σ, N) according to Theorem 5.2.12.3. As T (Σ, ∅)/NI is term generated, it
is a model of N .

So far, only inference rules that add new clauses to the current set of clauses
have been considered, corresponding to the Deduce rule of Knuth-Bendix Com-
pletion. In other words, derivations of the form N0 ⇒ N1 ⇒ N2 ⇒ . . . , where
each Ni+1 is obtained from Ni by performing an inference from clauses in Ni.
Under which circumstances can a clause during the derivation be deleted (or
simplified)? Can additional clauses beyond the inferences be added?

Definition 5.2.15 (Superposition Run). A run of the superposition calculus
is a derivation N0 ⇒SR N1 ⇒SR N2 ⇒SR . . . , so that

1. Ni |= Ni+1, and

2. all clauses in Ni \Ni+1 are redundant with respect to Ni+1.

256 CHAPTER 5. FIRST-ORDER LOGIC WITH EQUALITY

For a run, N∞ =
⋃
i≥0Ni and N∗ =

⋃
i≥0

⋂
j≥iNj . The set N∗ of all persistent

clauses is called the limit of the run.

In other words, during a run a new clause may be added if it follows from
the old ones, and a clause may be deleted, if it is redundant with respect to the
remaining ones.

Lemma 5.2.16 (Redundancy is Monotone). If N ⊆ N ′, then red(N) ⊆
red(N ′).

Lemma 5.2.17 (Redundant Clauses Do not Contribute). If N ′ ⊆ red(N), then
red(N) ⊆ red(N \N ′).

Proof. Follows from the compactness of first-order logic and the well-
foundedness of the multiset extension of the clause ordering.

Lemma 5.2.18 (Redundancy is Monotone in Runs). Let N0 ⇒ N1 ⇒SR

N2 ⇒SR . . . be a run. Then red(Ni) ⊆ red(N∞) and red(Ni) ⊆ red(N∗) for
every i.

Corollary 5.2.19 (Redundancy is Monotone Modulo Persistent Clauses). Ni ⊆
N∗ ∪ red(N∗) for every i.

Proof. If C ∈ Ni \N∗, then there is a k ≥ i so that C ∈ Nk \Nk+1, so C must
be redundant with respect to Nk+1. Consequently, C is redundant with respect
to N∗.

Definition 5.2.20 (Fair Run). A run is called fair, if (N∗ \ red(N∗)) ⇒SUPE

(N∗ \ red(N∗)) ∪ {C} then C ∈ (Ni ∪ red(Ni)) for some i.

Lemma 5.2.21 (Saturation of Fair Runs). If a run is fair, then its limit is
saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-
redundant clauses in N∗ is contained in some Ni ∪ red(Ni), and therefore con-
tained in N∗ ∪ red(N∗). Hence N∗ is saturated up to redundancy.

Theorem 5.2.22 (Refutational Completeness: Dynamic View). Let N0 ⇒SR

N1 ⇒SR N2 ⇒SR . . . be a fair run, let N∗ be its limit. Then N0 has a model if
and only if ⊥ ̸∈ N∗.

Proof. (⇐) By fairness, N∗ is saturated up to redundancy. If ⊥ ̸∈ N∗, then
it has a term-generated model. Since every clause in N0 is contained in N∗ or
redundant with respect to N∗, this model is also a model of grd(Σ, N0) and
therefore a model of N0.

(⇒) Obvious, since N0 |= N∗.

