
112 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. (Idea) Firstly, all unit clauses can be eliminated by recursively resolv-
ing away the respective literals, following the algorithm of Proposition 2.14.7.
For a clause set N containing only clauses of length two a directed graph is
constructed. The nodes are the propositional literals from N . For each clause
L ∨ K ∈ N , the graph contains the two directed edges (comp(L), K) and
(comp(K), L). Then N is unsatisfiable iff there is a cycle in the graph con-
taining two nodes L, comp(L). This can be decided in time at most quadratic
in N .

A ¬A

B ¬B

Interestingly, 2-SAT constitutes the border to NP-completeness, because 3-
SAT is already NP-complete. This can be seen by reducing any clause set to a
satisfiability equivalent 3-SAT clause set via the following transformation. For
any clause

L1 ∨ . . . ∨ Ln

consisting of more than three literals (n > 3) replace the clause by the clauses

L1 ∨ . . . ∨ L⌊n/2⌋ ∨ P
L⌊n/2⌋+1 ∨ . . . ∨ Ln ∨ ¬P

where P is a fresh propositional variable. Obviously, L1 ∨ . . . ∨ Ln is satisfiable
iff L1 ∨ . . . ∨ L⌊n/2⌋ ∨ P , L⌊n/2⌋+1 ∨ . . . ∨ Ln ∨ ¬P are.

Proposition 2.14.9. 3-SAT is NP-complete.

2.15 CDCL Extensions

In this section I extend the basic CDCL calculus from Section 2.9 in three
different directions. Firstly, by adding two new calculus rules CDCL turns into
the calculus OCDCL for finding models of minimal cost. Secondly, the OCDCL
calculus can be turned into a calculus for Max-SAT. The Max-SAT problem
consists of finding an assignment that falsifies a minimal number of clauses.
Thirdly, CDCL is extended for finding a minimal covering set of models such
that each variable is true in at least one model. All problems are optimization
problems that have a number of applications in practice. Of course, they are

2.15. CDCL EXTENSIONS 113

just my personal choice but they nicely show how the CDCL calculus as well as
a SAT problem can be modified to solve problems beyond pure satisfiability.

For an application example, if a computer program is represented on some
level as a SAT problem, then a minimal model can represent a shortest path
to a bug by adding some failure condition to the SAT problem. The respective
Max-SAT problem can point to a minimal change in order to fix the bug. A
covering set can represent all different inputs needed to explore all branches of
the program.

All CDCL extensions utilize the Branch-And-Bound principle. First, a not
necessarily optimal solution is derived and then this solution is used as a basis
for improvement and for cutting off states that cannot lead to a better solution
anymore as early as possible. In addition, the minimal covering set variant of
CDCL also relies on a preprocessing of the input SAT problem, where for each
propositional variable a separate clause set is created.

Cutting off states of the CDCL calculus means extra conflicts. These extra
conflicts are not of a logical nature but result from an additional Conflict rule
justified by the properties of the cost function. Therefore, the two new variants
of this section are of a different nature than the original CDCL calculus, because
a learned clause is no longer always a logical consequence of the input clause
set.

2.15.1 Computing Cost Optimal Models

A OCDCL problem state becomes a six-tuple (M ;N ;U ; k;C;O) where the first
five components and the respective notation and notions are inherited from the
standard CDCL calculus, Section 2.9. The sixth component O represents the
best model found so far. In addition, I assume a positive cost function cost on
literals with cost(L) ≥ 0 for all literals L. The function is naturally extended to
sequences and sets of literals by computing the sum of the elements.

Similar to the CDCL calculus, duplicate occurrences of literals in clauses are
always silently removed. This applies to the input clause set and the below rule
Resolve. The following states can be distinguished:

(ϵ;N ; ∅; 0;⊤; ϵ) is the start state for some clause set N
(M ;N ;U ; k;⊥;O) is the final state, where N has no model if O = ϵ, or

otherwise O is a cost optimal model
(M ;N ;U ; k;⊤;O) is an intermediate model search state
(M ;N ;U ; k;D;O) is a backtracking state if D ̸∈ {⊤,⊥}

The OCDCL rules are

Propagate(M ;N ;U ; k;⊤;O) ⇒OCDCL (MLC∨L;N ;U ; k;⊤;O)

provided C ∨ L ∈ (N ∪ U), M |= ¬C, L is undefined in M

Decide (M ;N ;U ; k;⊤;O) ⇒OCDCL (MLk+1;N ;U ; k + 1;⊤;O)

provided L is undefined in M , contained in N

114 CHAPTER 2. PROPOSITIONAL LOGIC

ConflSat (M ;N ;U ; k;⊤;O) ⇒OCDCL (M ;N ;U ; k;D;O)

provided D ∈ (N ∪ U) and M |= ¬D

ConflOpt (M ;N ;U ; k;⊤;O) ⇒OCDCL (M ;N ;U ; k;¬M ;O)

provided O ̸= ϵ and cost(M) ≥ cost(O)

Skip (MLC∨L;N ;U ; k;D;O) ⇒OCDCL (M ;N ;U ; k;D;O)

provided D ̸∈ {⊤,⊥} and comp(L) does not occur in D

Resolve (MLC∨L;N ;U ; k;D∨comp(L);O) ⇒OCDCL (M ;N ;U ; k;D∨C;O)

provided D is of level k

Backtrack (M1K
i+1M2;N ;U ; k;D ∨ L;O) ⇒OCDCL (M1L

D∨L;N ;U ∪ {D ∨
L}; i;⊤;O)

provided L is of level k and D is of level i

Improve (M ;N ;U ; k;⊤;O) ⇒OCDCL (M ;N ;U ; k;⊤;M)

provided M |= N , M is total, i.e., contains all atoms in N , and O = ϵ or
cost(M) < cost(O)

The trail M represents a conjunction, so ¬M denotes the disjunction of its
literals. Recall that ⊥ denotes the empty clause. The level of the empty clause
⊥ is 0. For simplicity, I omit the rules Restart and Forget. For OCDCL they
serve the same purpose as for CDCL. For Improve it is sufficient to consider
satisfiability with respect to N , because if M |= N but M ̸|= U then cost(M) ≥
cost(O), see Proposition 2.15.3.6. Furthermore, in this case rule ConflSat is
applicable.

Definition 2.15.1 (Reasonable OCDCL Strategy). An OCDCL strategy is
reasonable if ConflSat is preferred over ConflOpt is preferred over Improve is
preferred over Propagate which is preferred over the remaining rules.

Below I will show that by executing a reasonable OCDCL strategy, if ⊥ is
derived this either indicates unsatisfiability of N if O = ϵ, or the successful
derivation of a cost minimal model if O ̸= ϵ. In the latter case the generated
resolution refutation by the OCDCL calculus is a certificate for the optimality of
O. If OCDCL stops in a state (M ;N ;U ; k;⊥;O) with O ̸= ϵ, then for every total
model M ′ of N there is a clause C ∈ U with M ′ |= ¬C and cost(M ′) ≥ cost(O).

Example 2.15.2 (Optimal Model). Consider the clause set N = {P ∨Q} with
cost(P) = 1, cost(L) = 0 for all other literals over {P,Q}. Then a OCDCL
derivation is

2.15. CDCL EXTENSIONS 115

(ϵ;N ; ∅; 0;⊤, ϵ)

⇒Decide
OCDCL (P 1;N ; ∅; 1;⊤; ϵ)

⇒Decide
OCDCL (P 1¬Q2;N ; ∅; 2;⊤; ϵ)

⇒Improve
OCDCL (P 1¬Q2;N ; ∅; 2;⊤;P¬Q)

⇒ConflOpt
OCDCL (P 1¬Q2;N ; ∅; 2;¬P ∨Q;P¬Q)

⇒Backtrack
OCDCL (P 1Q¬P∨Q;N ; {¬P ∨Q}; 1;⊤;P¬Q)

⇒ConflOpt
OCDCL (P 1Q¬P∨Q;N ; {¬P ∨Q}; 1;¬P ∨ ¬Q;P¬Q)

⇒Resolve
OCDCL (P 1;N ; {¬P ∨Q}; 1;¬P ;P¬Q)

⇒Backtrack
OCDCL (¬P¬P ;N ; {¬P ∨Q,¬P}; 0;⊤;P¬Q)

⇒Propagate
OCDCL (¬P¬PQP∨Q;N ; {¬P ∨Q,¬P}; 0;⊤;P¬Q)

⇒Improve
OCDCL (¬P¬PQP∨Q;N ; {¬P ∨Q,¬P}; 0;⊤;¬PQ)

⇒ConflOpt
OCDCL (¬P¬PQP∨Q;N ; {¬P ∨Q,¬P}; 0;P ∨ ¬Q;¬PQ)

⇒Resolve
OCDCL (¬P¬P ;N ; {¬P ∨Q,¬P}; 0;P ;¬PQ)

⇒Resolve
OCDCL (ϵ;N ; {¬P ∨Q,¬P}; 0;⊥;¬PQ)

T
The rule Improve requires the model represented by M to be total.
It seems that one could also weaken this condition to partial models.
However, this immediately breaks the optimality result for OCDCL.
Consider the clause set N = {P ∨ Q} where cost(P) = cost(¬P) = 3 and
cost(Q) = 1. Obviously, the optimal partial model is [Q] at cost 1 whereas the
optimal total model has cost 4. If Improve considers partial models, then after
deciding P , applying the partial model variant of Improve and afterwards Con-
flOpt and Backtrack, a run results in the state (¬P¬P ; {P ∨Q}; {¬P}; 0;⊤;P).
After application of ConflOpt, Resolve, the final state (ϵ; {P∨Q}; {¬P}; 0;⊥;P)
is reached representing a solution at cost 3.

Similarly, the rule ConfOpt relies on the monotonicity of cost: cost(M) ≤
cost(ML) for any L. This can be relaxed to non-monotone cost functions, e.g.,
functions that also assign negative weights, see Exercise ??.

The OCDCL calculus shares many properties with the CDCL calculus. For
both OCDCL and CDCL, all literals on the trail at level k = 0 are propagated
literals. For CDCL they are then logical consequences out of the initial clause
set, for OCDCL they are consequences out of the inital clause set and the best
found model so far. Where CDCL may either stop by finding a model or with a
proof of the empty clause, OCDCL always derives the empty clause.

Proposition 2.15.3 (OCDCL Basic Properties). Consider an OCDCL
state (M ;N ;U ; k;D′;O) derived by a reasonable strategy from start state
(ϵ, N, ∅, 0,⊤, ϵ). Then the following properties hold:

1. M is consistent.

2. If O ̸= ϵ then O is consistent and O |= N .

3. If D′ ̸∈ {⊤,⊥} then M |= ¬D′.

116 CHAPTER 2. PROPOSITIONAL LOGIC

4. If D′ ̸∈ {⊤,⊥} then (i) D′ is entailed by N ∪ U , or (ii) for any model
M ′ |= {¬D′} ∪N ∪ U : cost(M ′) ≥ cost(O).

5. If D′ = ⊤ and M contains only propagated literals then for each valuation
A with A |= (N ∪ U) it holds A |= M .

6. For all models M with M |= N : if O = ϵ or cost(M) < cost(O) then
M |= (N ∪ U).

7. IfD′ = ⊥ then OCDCL terminates and there is no modelM ′ withM ′ |= N
and cost(M ′) < cost(O).

8. Each infinite derivation

(ϵ;N ; ∅; 0;⊤; ϵ) ⇒OCDCL (M1;N ;U1; k1;D1;O1) ⇒OCDCL . . .

contains an infinite number of Backtrack applications.

9. OCDCL never learns the same clause twice.

Proof. 1. By Proposition 2.9.6.1, because Decide and Propagate are identical to
CDCL.

2. By 1. above and the definition of Improve.

3. Both rules ConflSat and ConflOpt produce a clause D′ with M |= ¬D′. The
rest follows by an inductive argument over the application of Resolve, in analogy
to the proof of property 2.9.6.3.

4. By induction both on the overall derivation and the derivation of D′. For the
latter, a state with a clause D′ ̸∈ {⊤,⊥} can only be produced by the rule Con-
flSat or ConflOpt. In case of ConflSat property (i) holds by Proposition 2.9.6.2.
In case it is produced by ConflOpt then O ̸= ϵ and cost(¬D′) ≥ cost(O). In
particular, for any model M ′ with M ′ |= ¬D′ it holds cost(M ′) ≥ cost(O) be-
cause cost is monotone and rule Improve is correct in that O is in fact a model
for N . Now by induction on the number of Resolve (Skip) applications assume
for any model M ′ |= {¬(D ∨ comp(L))} ∪ N ∪ U : cost(M ′) ≥ cost(O), where
D′ = D∨comp(L). It needs to be shown for any modelM ′′ |= {¬(D∨C)}∪N∪U :
cost(M ′′) ≥ cost(O) after resolving D ∨ comp(L) with C ∨ L. Now M ′′ |= ¬D,
M ′′ |= ¬C and hence M ′′ |= L because C ∨ L ∈ (N ∪ U). Therefore,
M ′′ |= {¬(D ∨ comp(L))} ∪N ∪ U and thus cost(M ′′) ≥ cost(O).

5. Analogous to the proof of Proposition 2.9.6.4.

6. If O = ϵ, then N |= U , because ConflOpt was not applied so far and by
Proposition 2.9.6.2. If O ̸= ϵ and cost(M) < cost(O) by contradiction. Let
M ̸|= (N ∪ U) and let C ∈ U be the first clause learned in the derivation with
M |= ¬C from state (M ′;N ;U ′; k;C;O), U ′ ⊆ U , by a Backtrack application.
By assumption,M ′ |= (N∪U ′), thus (N∪U ′) ̸|= C so by Proposition 2.15.3.4.(ii)
it holds cost(M) ≥ cost(O).

2.15. CDCL EXTENSIONS 117

7. If D′ = ⊥ no OCDCL rule is applicable. The calculus terminates. If
O = ϵ then all clauses in U are consequences of N , Proposition 2.15.3.4.(i),
so N |= ⊥ and N has no model. If O ̸= ϵ, N has a model, by contradic-
tion. Assume there is a model M ′ with M ′ |= N and cost(M ′) < cost(O).
The final sequence of OCDCL generating ⊥ starts with an application of Con-
flSat or ConflOpt generating a state (M ′′;N ;U ; 0;D;O) with D ̸∈ {⊤,⊥} and
then (M ′′;N ;U ; 0;D;O) ⇒∗

OCDCL (M ′′′;N ;U ; 0;⊥;O) by rules Skip and Re-
solve. Obviously, M ′ ̸|= U , because N ∪ U does not have a model anymore.
Therefore, with respect to the length of the derivation, there is a minimal
clause C ∈ U that was generated out of a ConflictOpt application resulting
in state (M ′′′′;N ;U ′; k;D;O), D ̸∈ {⊤,⊥} and M ′ ̸|= C. Now by Proposi-
tion 2.15.3.4.(ii) it holds cost(M ′) ≥ cost(O).

8. Proof by contradiction. Assume Backtrack is applied only finitely often in the
infinite trace. Then there exists an i ∈ N+ such that Backtrack is not applied
for all j > i. Propagate and Decide can only be applied as long as there are
undefined literals in M . Since there is only a finite number of propositional
variables they can only be applied finitely often.

By definition the application of the rules Skip, Resolve and Backtrack is
preceded by an application of the rule ConflOpt or ConflSat since the fifth
component of initial state is ⊤ and the two Conflict rules are the only rules
that replace the fifth component by a clause. For the rules ConflSat and Con-
flOpt to be applied infinitely often the last component has to change to ⊤. By
definition that can only be performed by the rules Resolve and Backtrack (a
contradiction to the assumption). For Resolve assume the following rule ap-
plication (MLC∨L;N ;U ; k;D ∨ ¬L;O) ⇒OCDCL (M ;N ;U ; k;D ∨ C;O). For
D ∨ C = ⊤ there must be a literal K with {K, comp(K)} ⊆ (D ∨ C). With
Proposition 2.15.3.3 M |= ¬(D ∨ C) holds which is equivalent to M |= ⊥, a
contradiction because of Proposition 2.15.3.1. Therefore ConflSat and ConflOpt
are applied finitely often.

Skip and Resolve are also applied finitely often since the Conflict rules are
applied finitely often and they cannot be applied infinitely often interchangeably.
Otherwise the first component M has to be of infinite length, a contradiction.

9. By Lemma 2.9.7. The proof carries over except that after an application of
the ConflOpt rule the literal Kk

1 may also be the complement of L.

If partial models are considered, property 2.15.3.6 breaks, because for partial
models it might happen that a partial model satisfies N but there are clauses in
U solely consisting of undefined literals with respect to the partial model. The
above proof of property 2.15.3.6 assumes total models, hence from the fact that
M ̸|= (N ∪ U) we can conclude a false clause C in U .

The rule ConflOpt starts with the negation of the overall trail as a conflict
clause. This can be changed to the negation of all decision literals on the trail,
see Exercise ??.

118 CHAPTER 2. PROPOSITIONAL LOGIC

Lemma 2.15.4. The OCDCL calculus with a reasonable strategy has only 2
normal forms: (M ;N ;U ; 0;⊥;O) where O ̸= ϵ, O |= N and cost(O) is optimal,
and (M ;N ;U ; 0;⊥; ϵ) where N is unsatisfiable.

Proof. By Proposition 2.15.3.7 any state (M ;N ;U ; k;⊥;O) is a normal form.
By the same proposition: if O ̸= ϵ then cost(O) is optimal and by Proposi-
tion 2.15.3.2 it holds O |= N . In case O = ϵ then during the run neither Improve
nor ConflOpt have been applied, so N is unsatisfiable.

A reasonable strategy cannot generate a state (M ;N ;U ; k;⊥;O) with k > 0,
Exercise ??. To any state (M ;N ;U ; k;C;O) with C ̸∈ {⊤,⊥}, either Skip, Re-
solve or Backtrack is applicable. To any state (M ;N ;U ; k;⊤;O) either Propa-
gate, or Decide, or Improve or one of the conflict rules is applicable.

Lemma 2.15.5 (OCDCL Termination). OCDCL with a reasonable strategy
terminates in a state (M ;N ;U ; 0;⊥;O).

Proof. Proof by contradiction. Assume there is an infinite trace that starts in a
state (ϵ;N ; ∅; 0;⊤; ϵ). With Proposition 2.15.3.9 and 2.15.3.9 there can only be
a finite number of clauses that are learned during the infinite run. By definition
of the rules only the rule Backtrack causes that a clause is learned so that the
rule Backtrack can only be applied finitely often. But with Proposition 2.15.3.8
the rule Backtrack must be applied infinitely often, a contradiction. Therefore
there does not exist an infinite trace, i.e., OCDCL always terminates.

Theorem 2.15.6 (OCDCL Correctness). OCDCL with a reasonable strategy
starting from a state (ϵ;N ; ∅; 0;⊤; ϵ) terminates in a state (M ;N ;U ; 0;⊥;O). If
O = ϵ then N is unsatisfiable. If O ̸= ϵ then O |= N and for any other model
M ′ with M ′ |= N it holds cost(M ′) ≥ cost(O).

Proof. By Lemma 2.15.5 and Lemma 2.15.4.

If the OCDCL calculus is extended with the rules Restart and Forget it
does not terminate, in general. If they are applied only finitely often or they
are controlled by a fair strategy, see Section 2.10, then OCDCL terminates with
Restart and Forget as CDCL does.

As an alternative for the proof of Lemma 2.15.5 the termination can be
shown by assigning a well-founded measure µ and proving that it decreases
with each rule application except for the rules Restart and Forget. Let n be
the number of propositional variables in N . The domain for the measure µ is
N× {0, 1} ×N×N. Let costϵ be defined as cost but costϵ(ϵ) = k + 1 where k is
the maximum of cost on the propositional literals occurring in N .

µ((M ;N ;U ; k;D;O)) =

�
(3n − 1− |U |, 1, n− |M |, costϵ(O)) , D = ⊤
(3n − 1− |U |, 0, |M |, costϵ(O)) , else

The well-founded ordering is the lexicographic extension of < to quadruples.
What remains to be shown is that each rule application except Restart and
Forget decreases µ. This is done via a case analysis over the rules:

2.15. CDCL EXTENSIONS 119

Propagate:

µ((M ;N ;U ; k;⊤;O)) = (3n − 1− |U |, 1, n− |M |, costϵ(O))
> (3n − 1− |U |, 1, n− |MLC∨L|, costϵ(O))
= µ((MLC∨L;N ;U ; k;⊤;O))

Decide:

µ((M ;N ;U ; k;⊤;O)) = (3n − 1− |U |, 1, n− |M |, costϵ(O))
> (3n − 1− |U |, 1, n− |MLk+1|, costϵ(O))
= µ((MLk+1;N ;U ; k;⊤;O))

ConflSat:

µ((M ;N ;U ; k;⊤;O)) = (3n − 1− |U |, 1, n− |M |, costϵ(O))
> (3n − 1− |U |, 0, |M |, costϵ(O))
= µ((M ;N ;U ; k;D;O))

ConflOpt:

µ((M ;N ;U ; k;⊤;O)) = (3n − 1− |U |, 1, n− |M |, costϵ(O))
> (3n − 1− |U |, 0, |M |, costϵ(O))
= µ((M ;N ;U ; k;¬M ;O))

Skip:

µ((MLC∨L;N ;U ; k;D;O)) = (3n − 1− |U |, 0, |MLC∨L|, costϵ(O))
> (3n − 1− |U |, 0, |M |, costϵ(O))
= µ((M ;N ;U ; k;D;O))

Resolve:

µ((MLC∨L;N ;U ; k;D ∨ ¬L;O)) = (3n − 1− |U |, 0, |MLC∨L|, costϵ(O))
> (3n − 1− |U |, 0, |M |, costϵ(O))
= µ((M ;N ;U ; k;D ∨ C;O))

Backtrack: with Proposition 2.15.3-9 it holds that D ∨ L ̸∈ U so that the
first component decreases.

µ((M1K
i+1M2;N ;U ; k;D ∨ L;O)) = (3n − 1− |U |, 0, |M1K

i+1M2|, costϵ(O))
> (3n − 1− |U ∪ {D ∨ L}|, 1, n− |M1L

D∨L|, costϵ(O))
= µ((M1L

D∨L;N ;U ∪ {D ∨ L}; i;⊤;O))

Improve:

µ((M ;N ;U ; k;⊤;O)) = (3n − 1− |U |, 1, n− |M |, costϵ(O))
> (3n − 1− |U |, 1, n− |M |, costϵ(M))
= µ((M ;N ;U ; k;⊤;M))

The calculus can be further improved by a pruning rule.

Prune (M ;N ;U ; k;⊤;O) ⇒OCDCL (M ;N ;U ; k;¬M ;O)

provided for all total trail extensions MM ′ of M it holds cost(MM ′) ≥ cost(O)

120 CHAPTER 2. PROPOSITIONAL LOGIC

2.15.2 Max-SAT

Let N be a clause set separated into hard and soft clauses: N = NH ⊎ NS .
The Max-SAT problems consists of finding a valuation A with A |= NH andPC∈NS

A|=¬C ω(C) is minimal, where ω assigns a positive cost to each clause from
NS . The clauses in NH are called hard clauses, because they have to be satisfied,
whereas the clauses in NS are called soft clauses.

The difference between hard and soft clauses occurrs naturally in practice.
For example, consider the task of finding a maximal consistent subset of a
clause set N encoding some piece of common knowledge. In this context it
is typically the case that there are facts (clauses) that are known to be true,
i.e., they are hard, whereas for some facts this is not the case, they are soft. Or
consider fault detection in some technical system. The eventual fault and the
causal dependencies in the system constitute hard facts (clauses), whereas all
components that may be broken represent soft facts.

Max-SAT can be nicely reduced to the computation of cost optimal mod-
els by introducing a separate fresh extra variable Si to each clause in NS =
{C1, . . . , Cn}:

N ′
S = {Si ∨ Ci | Ci ∈ NS}

Now instead of solving Max-SAT for N a cost optimal model for N ′ =
NH ⊎N ′

S can be computed. The cost function is

cost(L) =

�
ω(Ci) if L = Si

0 otherwise

Now any valuation A that satisfies N ′ satisfies all clauses in NH by construc-
tion. For the clauses Ci ∈ NS they are either satisfied by A or the respective
variable Si is satisfied. All Si occur only positively in N ′, so any model for
NH can be extended to a model for N ′. In case some Si is satisfied by A, the
OCDCL calculus accounts for the cost of the respective Ci.

Theorem 2.15.7. A is a Max-SAT solution for N = NH ⊎ NS with minimal
value k =

PC∈NS

A|=¬C ω(C) iff (ϵ;N ′; ∅; 0;⊤; ϵ) ⇒∗
OCDCL (M ;N ′;U ; k;⊥;O) with a

reasonable strategy where N ′ = NH ⊎N ′
S , and cost(O) = k.

Proof. (Sketch) Firstly, note that O and A might actually disagree but result
in the same optimum k.

⇒: If A is a Max-SAT solution with optimal value k, then A′ defined by
A′(L) = A(L) and A′(Si) = 1 iff A(Ci) = 0 is a valuation satisfying N ′.
By construction cost(A′) = k, because A ̸|= Ci iff A′(Si) = 1. Furthermore,
O |= NH by Theorem 2.15.6. Now assume cost(O) < k. Then we can construct
a valuation A′′(L) = O(L) for all literals L ∈ N . Obviously, A′′ |= NH and

cost(O) =
PC∈NS

A′′|=¬C ω(C), contradicting that k is optimal. Note that O(Si) = 1

and O(Ci) = 1 contradicts Theorem 2.15.6.
⇐: the arguments of the previous case can be applied in a symmetric way.

2.15. CDCL EXTENSIONS 121

Actually, N ′ can be further extended by all clauses generated from Ci → ¬Si

preventing that any valuation is considered where both Si and Ci are satisfied.

Example 2.15.8. Let NH = {P} and NS = {¬P ∨Q,¬P ∨¬Q} where ω(¬P ∨
Q) = 2 and ω(¬P ∨ ¬Q) = 1 be a Max-SAT problem. Then N = {P,¬P ∨
Q ∨ S1,¬P ∨ ¬Q ∨ S2} is the input set for the OCDCL run with cost(S1) = 2,
cost(S2) = 1 and cost(L) = 0 for all other literals L over {P,Q, S1, S2}. Then
the following OCDCL run leads to the cost optimal model for the Max-SAT
problem:

(ϵ;N ; ∅; 0;⊤; ϵ)

⇒Propagate
OCDCL (PP ;N ; ∅; 0;⊤; ϵ)

⇒Decide
OCDCL (PP¬S1

1 ;N ; ∅; 1;⊤; ϵ)

⇒Propagate
OCDCL (PP¬S1

1Q
¬P∨Q∨S1 ;N ; ∅; 1;⊤; ϵ)

⇒Propagate
OCDCL (PP¬S1

1Q
¬P∨Q∨S1S¬P∨¬Q∨S2

2 ;N ; ∅; 1;⊤; ϵ)

⇒Improve
OCDCL (PP¬S1

1Q
¬P∨Q∨S1S¬P∨¬Q∨S2

2 ;N ; ∅; 1;⊤;O)

⇒ConflOpt
OCDCL (PP¬S1

1Q
¬P∨Q∨S1S¬P∨¬Q∨S2

2 ;N ; ∅; 1;¬P ∨ S1 ∨ ¬Q ∨ ¬S2;O)

⇒Resolve
OCDCL (PP¬S1

1Q
¬P∨Q∨S1 ;N ; ∅; 1;¬P ∨ S1 ∨ ¬Q;O)

⇒Resolve
OCDCL (PP¬S1

1 ;N ; ∅; 1;¬P ∨ S1;O)

⇒Backtrack
OCDCL (PPS¬P∨S1

1 ;N ;U ; 0;⊤;O)

⇒ConflOpt
OCDCL (PPS¬P∨S1

1 ;N ;U ; 0;¬P ∨ ¬S1;O)

⇒Resolve
OCDCL (PP ;N ;U ; 0;¬P ;O)

⇒Resolve
OCDCL (ϵ;N ;U ; 0;⊥;O)

with O = P¬S1QS2 and U = {¬P ∨ S1}

2.15.3 Minimal Covering Models

Given the set of all models M for a set of clauses N , find a subset M′ ⊆ M
such that |M′| is minimal and for each propositional variable P there is a model
M ∈ M′ with M(P) = 1.

Let n be the number of propositional variables P1, . . . , Pn in N . If there is
a solution to the problem, n different models are an upper bound. The basic
idea of the first solution is to consider these models in parallel by creating n
duplicates of N with fresh variables. So each Pi is replaced by n fresh copies
P j
i , 1 ≤ j ≤ n. Furthermore, the n fresh variables Q1, . . . , Qn denote whether

the j-th model for all variables P j
i is needed. Then the duplicated clause sets

are:
Nj := {C{Pi 7→ P j

i | 1 ≤ i ≤ n} ∨ ¬Qj | C ∈ N}
meaning that if Qj is true in the solution and therefore the j-th model is needed,
then the j-th copy of N must be fulfilled. Next, every Pi must have at least one
true copy in the model of the overall clause set:

N+ := {P 1
i ∨ . . . ∨ Pn

i | 1 ≤ i ≤ n}

122 CHAPTER 2. PROPOSITIONAL LOGIC

and finally, if some P j
i is true in the overall model, the overall j-th copy of N

needs to be satisfied by the model:

NQ := {¬P j
i ∨Qj | 1 ≤ i, j ≤ n}.

Then the problem can be solved by finding a minimal cost model (Sec-
tion 2.15.1) to the clause set (∪n

j=1Nj) ∪N+ ∪NQ with cost function cost(M) =Pn
j=1 M(Qj).

This encoding requires O(n2) additional variables and O(n ·max(m,n)) ad-
ditional clauses where n is the number of variables and m the number of clauses
in N . The encoding depends on the upper bound n of models needed to satisfy
all variables. It can be significantly reduced if the upper bound for the number
of models can be reduced. The idea is to start with a better upper bound for
the number of necessary models than just the number of variables. The upper
bound can be obtained by greedily adding models satisfying variables which
were false in all previously considered models (see Algorithm 10). Then the
above construction can be executed with respect to the improved upper bound.

Algorithm 10: GreedyFewModels(N)

Input : A clause set N with variables P1 . . . Pn.
Output: A set of models for N such that each variable is true in at least

one model if such a set exists.
1 P = {P1,, Pn};
2 M = ∅;
3 while P ̸= ∅ do
4 P = select a variable from P;

5 (PP ;N ; {P}; 0;⊤) ⇒↓
CDCL (M ;N ;U ; k;⊤) ;

6 if (M ∩ P = ∅) then
7 return ∅;
8 M = M ∪M ;
9 P = P \M ;

10 end
11 return M;

For the execution of CDCL inside GreedyFewModels(N), Algorithm 10, a
decision heuristic preferring atoms from P is beneficial. Note that M ∩ P = ∅
implies that for P ∈ P no model can be found.

Another possibility is to first compute all independent models M such that
they dominate all models with respect to the set of satisfied variables: for all
M , M |= N , M ̸∈ M there is an M ′ ∈ M such that {P | M(P) = 1} ⊆
{P | M ′(P) = 1} This set can be computed by creating another CDCL variant,
where the set M is explicitely built in the sixth component of a state. The
following states can occur:

2.15. CDCL EXTENSIONS 123

(ϵ;N ; ∅; 0;⊤; ∅) is the start state for some clause set N
(M ;N ;U ; k;⊥;M) is a final state, where N has no model if M = ∅ or

M is a covering set of models
(M ;N ;U ; k;⊤;M) is an intermediate model search state if M ̸|= N
(M ;N ;U ; k;D;M) is a backtracking state if D ̸∈ {⊤,⊥}

Propagate(M ;N ;U ; k;⊤;M) ⇒CDCLcm (MLC∨L;N ;U ; k;⊤;M)

provided C ∨ L ∈ (N ∪ U), M |= ¬C and L is undefined in M

Decide (M ;N ;U ; k;⊤;M) ⇒CDCLcm (MLk+1;N ;U ; k + 1;⊤;M)

provided L is undefined in M

ConflSat (M ;N ;U ; k;⊤;M) ⇒CDCLcm (M ;N ;U ; k;D;M)

provided D ∈ (N ∪ U) and M |= ¬D

ConflCM (M ;N ;U ; k;⊤;M) ⇒CDCLcm (M ;N ;U ; k;¬M ;M)

provided for all total extensions MM ′ with MM ′ |= N , there is an I ∈ M
which dominates MM ′

Skip (MLC∨L;N ;U ; k;D;M) ⇒CDCLcm (M ;N ;U ; k;D;M)

provided D ̸∈ {⊤,⊥} and comp(L) does not occur in D

Resolve (MLC∨L;N ;U ; k;D ∨ comp(L);M) ⇒CDCLcm (M ;N ;U ; k;D ∨
C;M)

provided D contains a literal of level k

Backtrack (M1K
i+1M2;N ;U ; k;D∨L;M) ⇒CDCLcm (M1L

D∨L;N ;U ∪{D∨
L}; i;⊤;M)

provided L is of level k and D is of level i

Add (M ;N ;U ; k;⊤;M) ⇒CDCLcm (M ;N ;U ; k;⊤;M ∪ {M})
provided M |= N , all literals from N are defined in M and M is not dominated
by a model in M

Once the set M is computed, the remaining task is to find a minimal subset
of M, covering the P1, . . . , Pn. This is the classical NP-complete Set Cover
Problem [56].

Analogous to a reasonable OCDCL strategy, a CDCLcm strategy is reason-
able if ConflSat is preferred over ConflCM is preferred over Add is preferred over
Propagate which is preferred over the remaining rules. Proving the respective
properties for CDCLcm is again analogous to the proofs for OCDCL.

124 CHAPTER 2. PROPOSITIONAL LOGIC

Theorem 2.15.9 (CDCLcm Correctness). For a CDCLcm run starting from
(ϵ, N, ∅, 0,⊤, ∅) and ending in a state (M ;N ;U ; k;⊥;M), and for every variable
P occurring in N , there is a model M of N , M ∈ M, where M |= P , or there
is no model satisfying both P and N .

Proof. See Exercise ??.

2.16 Applications

For the application of propositional logic on an arbitrary problem it needs to
be encoded into a propositional formula ϕ. The satisfiability of ϕ can then be
checked via one of the calculi developed in this chapter, typically, CDCL. In
case ϕ is satisfiable the corresponding calculus derives a model which has to be
interpreted as a solution to the original problem. The unsatisfiability of ϕ must
be interpreted correspondingly.

2.16.1 Combinatorial Finite Domain Problems

Whenever a combinatorial finite domain problem can be encoded as a SAT
problem in a reasonable way, solving the problem this way is often a good
choice. I start with the example of a Sudoku puzzle and discuss afterwards the
overall picture.

As a suitable application of propositional logic serves the Sudoku puzzle. In
chapter 1.1 a specific 4× 4 Sudoku puzzle was solved using a specific calculus.
In this section a general n2 × n2 Sudoku puzzle is encoded into propositional
logic and exemplarily the Resolution calculus from this chapter is applied to a
4× 4 Sudoku puzzle.

For the encoding propositional variables P d
i,j are defined where P d

i,j is true
iff the value of square (i, j) is d. Square boxes are denoted by Qi,j where Qi,j in-
cludes the squares (i, j), . . . , (i+n−1, j+n−1). The corresponding propositional
clause constraints are constructed as follows:

1. For every initially assigned square (i, j) with value d generate P d
i,j

2. For every square (i, j) generate P 1
i,j ∨ . . . ∨ Pn2

i,j

3. For every square (i, j) and pair of values d < d′ generate ¬P d
i,j ∨ ¬P d′

i,j

4. For every value d and column i generate P d
i,1 ∨ . . .∨P d

i,n2 (analogously for

rows)

5. For every value d and square box Qi,j generate P d
i,j ∨ . . . ∨ P d

i+n−1,j+n−1

6. For every value d, column i and pair of rows j < j′ generate ¬P d
i,j ∨¬P d

i,j′

(analogously for rows)

