
First-Order Logic

First-Order Logic

First-Order logic is a generalization of propositional logic.
Propositional logic can represent propositions, whereas
first-order logic can represent individuals and propositions about
individuals.
For example, in propositional logic from “Socrates is a man” and
“If Socrates is a man then Socrates is mortal” the conclusion
“Socrates is mortal” can be drawn.
In first-order logic this can be represented much more
fine-grained. From “Socrates is a man” and “All man are mortal”
the conclusion “Socrates is mortal” can be drawn.

December 8, 2016 5/39



First-Order Logic

3.1.1 Definition (Many-Sorted Signature)
A many-sorted signature Σ = (S,Ω,Π) is a triple consisting of
a finite non-empty set S of sort symbols,
a non-empty set Ω of operator symbols (also called function
symbols) over S and
a set Π of predicate symbols.
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First-Order Logic

3.1.1 Definition (Many-Sorted Signature Ctd)
Every operator symbol f ∈ Ω has a unique sort declaration
f : S1 × . . .× Sn → S, indicating the sorts of arguments (also
called domain sorts) and the range sort of f , respectively, for
some S1, . . . ,Sn,S ∈ S where n ≥ 0 is called the arity of f , also
denoted with arity(f ). An operator symbol f ∈ Ω with arity 0 is
called a constant.

Every predicate symbol P ∈ Π has a unique sort declaration
P ⊆ S1 × . . .× Sn. A predicate symbol P ∈ Π with arity 0 is called
a propositional variable. For every sort S ∈ S there must be at
least one constant a ∈ Ω with range sort S.
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First-Order Logic

3.1.1 Definition (Many-Sorted Signature Ctd)
In addition to the signature Σ, a variable set X , disjoint from Ω is
assumed, so that for every sort S ∈ S there exists a countably
infinite subset of X consisting of variables of the sort S. A
variable x of sort S is denoted by xS.
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First-Order Logic

3.1.2 Definition (Term)
Given a signature Σ = (S,Ω,Π), a sort S ∈ S and a variable set
X , the set TS(Σ,X ) of all terms of sort S is recursively defined by
(i) xS ∈ TS(Σ,X ) if xS ∈ X , (ii) f (t1, . . . , tn) ∈ TS(Σ,X ) if f ∈ Ω and
f : S1 × . . .× Sn → S and ti ∈ TSi (Σ,X ) for every i ∈ {1, . . . ,n}.

The sort of a term t is denoted by sort(t), i.e., if t ∈ TS(Σ,X ) then
sort(t) = S. A term not containing a variable is called ground.
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First-Order Logic

For the sake of simplicity it is often written: T (Σ,X ) for⋃
S∈S TS(Σ,X ), the set of all terms, TS(Σ) for the set of all

ground terms of sort S ∈ S, and T (Σ) for
⋃

S∈S TS(Σ), the set of
all ground terms over Σ.

Note that the sets TS(Σ) are all non-empty, because there is at
least one constant for each sort S in Σ. The sets TS(Σ,X )
include infinitely many variables of sort S.
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3.1.3 Definition (Equation, Atom, Literal)
If s, t ∈ TS(Σ,X ) then s ≈ t is an equation over the signature Σ.
Any equation is an atom (also called atomic formula) as well as
every P(t1, . . . , tn) where ti ∈ TSi (Σ,X ) for every i ∈ {1, . . . ,n}
and P ∈ Π, arity(P) = n, P ⊆ S1 × . . .× Sn.

An atom or its negation of an atom is called a literal.
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Definition (Formulas)
The set FOL(Σ,X ) of many-sorted first-order formulas with
equality over the signature Σ is defined as follows for formulas
φ, ψ ∈ FΣ(X ) and a variable x ∈ X :

FOL(Σ,X ) Comment
⊥ false
> true

P(t1, . . . , tn), s ≈ t atom
(¬φ) negation

(φ ◦ ψ) ◦ ∈ {∧,∨,→,↔}
∀x .φ universal quantification
∃x .φ existential quantification
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First-Order Logic

?? Definition (Positions)
The set of positions of a term, formula is inductively defined by:

pos(x) := {ε} if x ∈ X
pos(φ) := {ε} if φ ∈ {>,⊥}

pos(¬φ) := {ε} ∪ {1p | p ∈ pos(φ)}
pos(φ ◦ ψ) := {ε} ∪ {1p | p ∈ pos(φ)} ∪ {2p | p ∈ pos(ψ)}
pos(s ≈ t) := {ε} ∪ {1p | p ∈ pos(s)} ∪ {2p | p ∈ pos(t)}

pos(f (t1, . . . , tn)) := {ε} ∪
⋃n

i=1{ip | p ∈ pos(ti)}
pos(P(t1, . . . , tn)) := {ε} ∪

⋃n
i=1{ip | p ∈ pos(ti)}

pos(∀x .φ) := {ε} ∪ {1p | p ∈ pos(φ)}
pos(∃x .φ) := {ε} ∪ {1p | p ∈ pos(φ)}

where ◦ ∈ {∧,∨,→,↔} and ti ∈ T (Σ,X ) for all i ∈ {1, . . . ,n}.
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First-Order Logic

An term t (formula φ) is said to contain another term s (formula
ψ) if t |p = s (φ|p = ψ). It is called a strict subexpression if p 6= ε.
The term t (formula φ) is called an immediate subexpression of s
(formula ψ) if |p| = 1. For terms a subexpression is called a
subterm and for formulas a subformula, respectively.

The size of a term t (formula φ), written |t | (|φ|), is the cardinality
of pos(t), i.e., |t | := |pos(t)| (|φ| := |pos(φ)|). The depth of a
term, formula is the maximal length of a position in the term,
formula: depth(t) := max{|p| | p ∈ pos(t)}
(depth(φ) := max{|p| | p ∈ pos(φ)}).
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First-Order Logic

The set of all variables occurring in a term t (formula φ) is
denoted by vars(t) (vars(φ)) and formally defined as
vars(t) := {x ∈ X | x = t |p,p ∈ pos(t)}
(vars(φ) := {x ∈ X | x = φ|p,p ∈ pos(φ)}).
A term t (formula φ) is ground if vars(t) = ∅ (vars(φ) = ∅). Note
that vars(∀x .a ≈ b) = ∅ where a,b are constants. This is justified
by the fact that the formula does not depend on the quantifier,
see the semantics below. The set of free variables of a formula φ
(term t) is given by fvars(φ, ∅) (fvars(t , ∅)) and recursively defined
by fvars(ψ1 ◦ ψ2,B) := fvars(ψ1,B) ∪ fvars(ψ2,B) where
◦ ∈ {∧,∨,→,↔}, fvars(∀x .ψ,B) := fvars(ψ,B ∪ {x}),
fvars(∃x .ψ,B) := fvars(ψ,B ∪ {x}), fvars(¬ψ,B) := fvars(ψ,B),
fvars(L,B) := vars(L) \ B (fvars(t ,B) := vars(t) \ B.
For fvars(φ, ∅) I also write fvars(φ).
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In ∀x .φ (∃x .φ) the formula φ is called the scope of the quantifier.
An occurrence q of a variable x in a formula φ (φ|q = x) is called
bound if there is some p < q with φ|p = ∀x .φ′ or φ|p = ∃x .φ′. Any
other occurrence of a variable is called free.
A formula not containing a free occurrence of a variable is called
closed. If {x1, . . . , xn} are the variables freely occurring in a
formula φ then ∀x1, . . . , xn.φ and ∃x1, . . . , xn.φ (abbreviations for
∀x1.∀x2 . . . ∀xn.φ, ∃x1.∃x2 . . . ∃xn.φ, respectively) are the universal
and the existential closure of φ, respectively.
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3.1.7 Definition (Polarity)
The polarity of a subformula ψ = φ|p at position p is pol(φ,p)
where pol is recursively defined by

pol(φ, ε) := 1
pol(¬φ,1p) := −pol(φ,p)

pol(φ1 ◦ φ2, ip) := pol(φi ,p) if ◦ ∈ {∧,∨}
pol(φ1 → φ2,1p) := −pol(φ1,p)
pol(φ1 → φ2,2p) := pol(φ2,p)
pol(φ1 ↔ φ2, ip) := 0

pol(P(t1, . . . , tn),p) := 1
pol(t ≈ s,p) := 1

pol(∀x .φ,1p) := pol(φ,p)
pol(∃x .φ,1p) := pol(φ,p)
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Semantics

3.2.1 Definition (Σ-algebra)
Let Σ = (S,Ω,Π) be a signature with set of sorts S, operator set
Ω and predicate set Π. A Σ-algebra A, also called
Σ-interpretation, is a mapping that assigns (i) a non-empty carrier
set SA to every sort S ∈ S, so that (S1)A ∩ (S2)A = ∅ for any
distinct sorts S1,S2 ∈ S, (ii) a total function
fA : (S1)A × . . .× (Sn)A → (S)A to every operator f ∈ Ω,
arity(f ) = n where f : S1 × . . .× Sn → S, (iii) a relation
PA ⊆ ((S1)A × . . .× (Sm)A) to every predicate symbol P ∈ Π,
arity(P) = m. (iv) the equality relation becomes
≈A= {(e,e) | e ∈ UA} where the set UA :=

⋃
S∈S(S)A is called

the universe of A.
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A (variable) assignment, also called a valuation for an algebra A
is a function β : X → UA so that β(x) ∈ SA for every variable
x ∈ X , where S = sort(x). A modification β[x 7→ e] of an
assignment β at a variable x ∈ X , where e ∈ SA and
S = sort(x), is the assignment defined as follows:

β[x 7→ e](y) =

{
e if x = y
β(y) otherwise.
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The homomorphic extension A(β) of β onto terms is a mapping
T (Σ,X )→ UA defined as (i) A(β)(x) = β(x), where x ∈ X and
(ii) A(β)(f (t1, . . . , tn)) = fA(A(β)(t1), . . . ,A(β)(tn)), where f ∈ Ω,
arity(f ) = n.
Given a term t ∈ T (Σ,X ), the value A(β)(t) is called the
interpretation of t under A and β. If the term t is ground, the
value A(β)(t) does not depend on a particular choice of β, for
which reason the interpretation of t under A is denoted by A(t).
An algebra A is called term-generated, if every element e of the
universe UA of A is the image of some ground term t , i.e.,
A(t) = e.
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3.2.2 Definition (Semantics)
An algebra A and an assignment β are extended to formulas
φ ∈ FOL(Σ,X ) by

A(β)(⊥) := 0 A(β)(>) := 1
A(β)(s ≈ t) := 1 if A(β)(s) = A(β)(t) else 0

A(β)(P(t1, . . . , tn)) := 1 if (A(β)(t1), . . . ,A(β)(tn)) ∈ PA else 0
A(β)(¬φ) := 1−A(β)(φ)

A(β)(φ ∧ ψ) := min({A(β)(φ),A(β)(ψ)})
A(β)(φ ∨ ψ) := max({A(β)(φ),A(β)(ψ)})
A(β)(φ→ ψ) := max({(1−A(β)(φ)),A(β)(ψ)})
A(β)(φ↔ ψ) := if A(β)(φ) = A(β)(ψ) then 1 else 0
A(β)(∃xS.φ) := 1 if A(β[x 7→ e])(φ) = 1

for some e ∈ SA and 0 otherwise
A(β)(∀xS.φ) := 1 if A(β[x 7→ e])(φ) = 1

for all e ∈ SA and 0 otherwise

December 8, 2016 21/39



First-Order Logic

A formula φ is called satisfiable by A under β (or valid in A under
β) if A, β |= φ; in this case, φ is also called consistent;

satisfiable by A if A, β |= φ for some assignment β;

satisfiable if A, β |= φ for some algebra A and some assignment
β;

valid in A, written A |= φ, if A, β |= φ for any assignment β; in this
case, A is called a model of φ;

valid, written |= φ, if A, β |= φ for any algebra A and any
assignment β; in this case, φ is also called a tautology;

unsatisfiable if A, β 6|= φ for any algebra A and any assignment β;
in this case φ is also called inconsistent.
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First-Order Logic

Given two formulas φ and ψ, φ entails ψ, or ψ is a consequence
of φ, written φ |= ψ, if for any algebra A and assignment β, if
A, β |= φ then A, β |= ψ.
The formulas φ and ψ are called equivalent, written φ |=| ψ, if
φ |= ψ and ψ |= φ.
Two formulas φ and ψ are called equisatisfiable, if φ is satisfiable
iff ψ is satisfiable (not necessarily in the same models).
The notions of “entailment”, “equivalence” and “equisatisfiability”
are naturally extended to sets of formulas, that are treated as
conjunctions of single formulas.
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Clauses are implicitly universally quantified disjunctions of
literals. A clause C is satisfiable by an algebra A if for every
assignment β there is a literal L ∈ C with A, β |= L.

Note that if C = {L1, . . . ,Lk} is a ground clause, i.e., every Li is a
ground literal, then A |= C if and only if there is a literal Lj in C so
that A |= Lj . A clause set N is satisfiable iff all clauses C ∈ N are
satisfiable by the same algebra A. Accordingly, if N and M are
two clause sets, N |= M iff every model A of N is also a model of
M.
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First-Order Logic

3.3.1 Definition (Substitution (well-sorted))
A well-sorted substitution is a mapping σ : X → T (Σ,X ) so that
1. σ(x) 6= x for only finitely many variables x and
2. sort(x) = sort(σ(x)) for every variable x ∈ X .

The application σ(x) of a substitution σ to a variable x is often
written in postfix notation as xσ. The variable set
dom(σ) := {x ∈ X | xσ 6= x} is called the domain of σ.
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The term set codom(σ) := {xσ | x ∈ dom(σ)} is called the
codomain of σ. From the above definition it follows that dom(σ) is
finite for any substitution σ. The composition of two substitutions
σ and τ is written as a juxtaposition στ , i.e., tστ = (tσ)τ .
A substitution σ is called idempotent if σσ = σ. A substitution σ is
idempotent iff dom(σ) ∩ vars(codom(σ)) = ∅.
Substitutions are often written as sets of pairs
{x1 7→ t1, . . . , xn 7→ tn} if dom(σ) = {x1, . . . , xn} and xiσ = ti for
every i ∈ {1, . . . ,n}.
The modification of a substitution σ at a variable x is defined as
follows:

σ[x 7→ t ](y) =

{
t if y = x
σ(y) otherwise
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A substitution σ is identified with its extension to formulas and
defined as follows:
1. ⊥σ = ⊥,
2. >σ = >,
3. (f (t1, . . . , tn))σ = f (t1σ, . . . , tnσ),
4. (P(t1, . . . , tn))σ = P(t1σ, . . . , tnσ),
5. (s ≈ t)σ = (sσ ≈ tσ),
6. (¬φ)σ = ¬(φσ),
7. (φ ◦ ψ)σ = φσ ◦ ψσ where ◦ ∈ {∨,∧},
8. (Qxφ)σ = Qz(φσ[x 7→ z]) where Q ∈ {∀, ∃}, z and x are of

the same sort and z is a fresh variable.

The result tσ (φσ) of applying a substitution σ to a term t (formula
φ) is called an instance of t (φ).
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The substitution σ is called ground if it maps every domain
variable to a ground term, i.e., the codomain of σ consists of
ground terms only.
If the application of a substitution σ to a term t (formula φ)
produces a ground term tσ (a variable-free formula,
vars(φσ) = ∅), then tσ (φσ) is called ground instance of t (φ) and
σ is called grounding for t (φ). The set of ground instances of a
clause set N is given by
ground(Σ,N) = {Cσ | C ∈ N, σ is grounding for C} is the set of
ground instances of N.
A substitution σ is called a variable renaming if codom(σ) ⊆ X
and for any x , y ∈ X , if x 6= y then xσ 6= yσ.
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3.3.2 Lemma (Substitutions and Assignments)
Let β be an assignment of some interpretation A of a term t and
σ a substitution. Then

β(tσ) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t)

where dom(σ) = {x1, . . . , xn}.
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