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Obvious Positions

A smaller set of positions from ¢, called obvious positions, is still
preventing the explosion and given by the rules:

(i) p is an obvious position if ¢|, is an equivalence and there is a
position g < p such that ¢|4 is either an equivalence or
disjunctive in ¢ or

(i) pq is an obvious position if ¢|pq is a conjunctive formula in ¢,
¢|p is a disjunctive formula in ¢ and for all positions r with

p < r < pq the formula ¢|, is not a conjunctive formula.

A formula ¢|, is conjunctive in ¢ if ¢|, is a conjunction and
pol(¢, p) € {0,1} or ¢|p is a disjunction or implication and
pol(¢,p) € {0, -1}

Analogously, a formula ¢|, is disjunctive in ¢ if ¢|, is a disjunction
or implication and pol(¢, p) € {0, 1} or ¢|p is a conjunction and
pol(¢, p) € {0, -1}
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Polarity Dependent Equivalence
Elimination

ElimEquivl  x[(¢ < ¥)lo =acnF X[(¢ = ¥) A (¥ — 9)lp
provided pol(x, p) € {0,1}

ElimEquivz  x[(¢ < ¥)]p =acnk X[(@AY) V (md A —9)]p
provided pol(x, p) = —1
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Extra T, L Elimination Rules

where the two rules ElimTB11, ElimTB12 for equivalences are

ElimTB7
ElimTB8
ElimTB9
ElimTB10
ElimTB11
ElimTB12

xlo — Llp
xX[L — dlp
xlo = Tlp
X[T — dlp
xlg < Llp
X[¢ < Tlp

= ACNF
= ACNF
= ACNF
= ACNF
= ACNF
=" ACNF

applied with respect to commutativity of «.
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Advanced CNF Algorithm

Algorithm: 3 acnf(¢)

Input : A formula ¢.

Output: A formula v in CNF satisfiability preserving to ¢.
whilerule (ElimTB1(¢),....ElimTB12(¢)) do ;
SimpleRenaming(¢) on obvious positions;

whilerule (ElimEquiv1(¢),ElimEquiv2(¢)) do ;
whilerule (Elimimp(¢)) do ;

whilerule (PushNeg1(¢),...,PushNeg3(¢)) do ;
whilerule (PushDisj(¢)) do ;

return ¢;
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Propositional Resolution

The propositional resolution calculus operates on a set of clauses
and tests unsatisfiability.

Recall that for clauses | switch between the notation as a
disjunction, e.g., PV QV PV =R, and the multiset notation, e.g.,
{P, Q, P,-R}. This makes no difference as we consider V in the
context of clauses always modulo AC. Note that L, the empty
disjunction, corresponds to (), the empty multiset. Clauses are
typically denoted by letters C, D, possibly with subscript.
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Resolution Inference Rules

Resolution (Nw{CyV P,CoV-P}) =pes
(NU{CyVP,CoVv-P}U{CyV Cs})

Factoring (Nw{CVLVL}) =Res
(Nu{CvLvL}u{CVL})
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