1.3. BASIC COMPUTER SCIENCE PREREQUISITES 15

For example, if L is reducible to L’ and L’ € P then L € P. A decision problem
is NP-hard if every problem in NP is polynomial time reducible to it. A decision
problem is NP-complete if it is NP-hard and in NP. Actually, the first NP-
complete problem [8] has been propositional satisfiability (SAT). Chapter 2 is
completely devoted to solving SAT.

1.3.4 Word Grammars

When Gédel presented his undecidability proof on the basis of arithmetic, many
people still believed that the construction is so artificial that such problems will
never arise in practice. This didn’t change with Turing’s invention of the Turing
machine and the undecidable halting problem of such a machine. However, then
Post presented his correspondence problem in 1946 [27] it became obvious that
undecidability is not an artificial concept.

Definition 1.3.3 (Finite Word). Given a nonempty alphabet ¥ the set £* of
finite words over % is defined by

1. the empty word € € ¥*
2. for each letter a € ¥ also a € ¥*
3. if u,v € ¥* s0 uv € ¥* where uv denotes the concatenation of v and v.

Definition 1.3.4 (Length of a Finite Word). The length |u| of a word v € £*
is defined by

1. |e| =0,
2. |a| :=1 for any a € ¥ and
3. |uwv| := |u] + |v| for any u,v € I*.

Definition 1.3.5 (Word Embedding). Given two words u, v, then u is embedded
in v written v C v if for v = ay...a, there are words vg,...,v, such that
V= 1pa1v142 . ..anUy,.

Reformulating the above definition, a word u is embedded in v if u can
be obtained from v by erasing letters. For example, higman is embedded in
highmountain.

Definition 1.3.6 (PCP). Given two finite lists of words (ui,...,u,) and
(v1,...,v,) the Post Correspondence Problem (PCP) is to find a finite index

list (i1,...,4k), 1 <i; < m, so that u;, u,, ... Uiy, = Vi, Vi, ... Vs

Take for example the two lists (a,b, bb) and (ab, ab,b) over alphabet ¥ =
{a,b}. Then the index list (1, 3) is a solution to the PCP with common word
abb.

Theorem 1.3.7 (Post 1942). PCP is undecidable.

16 CHAPTER 1. PRELIMINARIES

Lemma 1.3.8 (Higman’s Lemma 1952). For any infinite sequence of words

Uy, Us, ... over a finite alphabet there are two words wug, ug4; such that uy C
Uk+-1-
Proof. By contradiction. Assume an infinite sequence wuq, us,... such that for

any two words ug, ugy; they are not embedded, i.e., ug £ upy;. Furthermore, I
assume that the sequence is minimal at any word with respect to length, i.e.,
considering any ug, there is no infinite sequence with the above property that
shares the words up to ui_; and then continues with a word of smaller length
than ug. Next, the alphabet is finite, so there must be a letter, say a that oc-
curs infinitely often as the first letter of the words of the sequence. The words
starting with a form an infinite subsequence auj, ,auy ,... where uy, = auj, .
This infinite subsequence itself has the non-embedding property, because it is
a subsequence of the originial sequence. Now consider the infinite sequence
UL, Uy v oy Uy —1, uﬁcl ; Uy, - - -~ Also this sequence has the non-embedding prop-
erty: if some u; C u,C then u; C auk contradicting that the starting sequence is
non-embedding. But then the constructed sequence contradicts the minimality
assumption with respect to length, finishing the proof. O

Definition 1.3.9 (Context-Free Grammar). A context-free grammar G =
(Na,Ta, Ra, Si) consists of:

1. a set of non-terminal symbols Ng

2. a set of terminal symbols T

3. aset Rg of rules A = w where A € Ng and w € (Ng UTg)*

4. a start symbol Sg where Sg € N
For rules A = wq, A = wy we write A = wy | wa.

Given a context free grammar G and two words u,v € (Ng U Tg)* I write
w= v if u=1u; Aug and v = u; wus and there is a rule A = w in Rg. The
language generated by G is L(G) = {w € T4 | S =* w}, where =* is the
reflexive and transitive closure of =.

A context free grammar G is in Chomsky Normal Form [7] if all rules are
if the form A = B1 B, with B; € Ng or A = w with w € Tg. It is said to be

in Greibach Normal Form [15] if all rules are of the form A = aw with a € Tg
and w € N§.

1.4 Orderings

An ordering R is a binary relation on some set M. Depending on particular
properties such as

1.4. ORDERINGS 17

(reflexivity) Va € M R(x,x)
(irreflexivity) Vo € M —R(z,x)
(antisymmetry) Vaz,y € M (R(z,y) AN R(y,x) =z =1y)
(transitivity) Va,y,z € M (R(z,y) A R(y, 2) — R(x, 2))
(totality) Va,y € M (R(x,y)V R(y,z))

there are different types of orderings. The relation = is the identity relation
on M. The quantifier V reads “for all”, and the boolean connectives A, V, and —
read “and”, “or”, and “implies”, respectively. For example, the above formula
stating reflexivity Vo € M R(x,) is a shorthand for “for all z € M the relation
R(z,x) holds”.

Actually, the definition of the above properties is informal in the sense
that I rely on the meaning of certain symbols such as € or —. While
the former is assumed to be known from school math, the latter is
“explained” above. So, strictly speaking this book is neither self contained,
nor overall formal. For the concrete logics developed in subsequent chapters, I
will formally define — but here, where it is used to state properties needed to
eventually define the notion of an ordering, it remains informal. Although it is
possible to develop the overall content of this book in a completely formal style,
such an approach is typically impossible to read and comprehend. Since this
book is about teaching a general framework to eventually generate automated
reasoning procedures this would not be the right way to go. In particular, being
informal starts already with the use of natural language. In order to support
this “mixed” style, examples and exercises deepen the understanding and rule
out potential misconceptions.

Now, based on the above defined properties of a relation, the usual notions
with respect to orderings are stated below.

Definition 1.4.1 (Orderings). A (partial) ordering = (or simply ordering) on
a set M, denoted (M,), is a reflexive, antisymmetric, and transitive binary
relation on M. It is a total ordering if it also satisfies the totality property.
A strict (partial) ordering > is a transitive and irreflexive binary relation on
M. A strict ordering is well-founded, if there is no infinite descending chain
mg = mq = Mg = ... where m; € M.

Given a strict partial order > on some set M, its respective partial order > is
constructed by adding the identities (= U =). If the partial order > extension of
some strict partial order > is total, then we call also > total. As an alternative,
a strict partial order > is total if it satisfies the strict totality axiom Vz,y €
M (x #y — (R(z,y)V R(y,z))). Given some ordering > the respective ordering
< is defined by a < b iff b > a.

Example 1.4.2. The well-known relation < on N, where k& < [if there is a j
so that k4 j = [for k,l,j € N, is a total ordering on the naturals. Its strict
subrelation < is well-founded on the naturals. However, < is not well-founded
on Z.

18 CHAPTER 1. PRELIMINARIES

Definition 1.4.3 (Minimal and Smallest Elements). Given a strict ordering
(M, =), an element m € M is called minimal, if there is no element m’ € M so
that m > m/. An element m € M is called smallest, if m’ = m for all m’ € M
different from m.

Note the subtle difference between minimal and smallest. There may be
several minimal elements in a set M but only one smallest element. Furthermore,
in order for an element being smallest in M it needs to be comparable to all
other elements from M.

Example 1.4.4. In N the number 0 is smallest and minimal with respect to <.
For the set M = {q € Q | 5 < ¢} the ordering < on M is total, has the minimal
and smallest element 5 but is not well-founded.

If < is the ancestor relation on the members of a human family, then <
typically will have several minimal elements, the currently youngest children of
the family, but no smallest element, as long as there is a couple with more than
one child. Furthermore, < is not total, but well-founded.

Well-founded orderings can be combined to more complex well-founded or-
derings by lexicographic or multiset extensions.

Definition 1.4.5 (Lexicographic and Multiset Ordering Extensions). Let
(My, 1) and (Ma, =3) be two strict orderings. Their lezicographic combination
= lex= (=1, >2) on M x My is defined as (my,mg) > (mf,mb) iff my =1 mj or
my = m) and mg =9 mj.

Let (M, >) be a strict ordering. The multiset extension >, to multisets
over M is defined by S1 = So iff S; # Sy and Vm € M [Sa(m) > Si(m) —
Im’ € M (m' > mA Si(m') > Sa(m'))].

The definition of the lexicographic ordering extensions can be exapanded to
n-tuples in the obvious way. So it is also the basis for the standard lexicographic
ordering on words as used, e.g., in dictionaries. In this case the M; are alphabets,
say a-z, where a < b < ... < z. Then according to the above definition tiger <
tree.

Example 1.4.6 (Multiset Ordering). Consider the multiset extension of (N, >).
Then {2} >nu {1,1,1} because there is no element in {1,1,1} that is larger
than 2. As a border case, {2,1} >nu {2} because there is no element that has
more occurrences in {2} compared to {2,1}. The other way round, 1 has more
occurrences in {2,1} than in {2} and there is no larger element to compensate

for it, SO {2} }mul {27 1}

Proposition 1.4.7 (Properties of Lexicographic and Multiset Ordering Exten-
sions). Let (M,>), (My,>1), and (Ma,>2) be orderings. Then

1. >jex is an ordering on M7 x M.
2. if (My,>1) and (Ma, =2) are well-founded so is > jex.

3. if (My,>1) and (Ma, >3) are total S0 iS >jex.

1.5. INDUCTION 19

4. > is an ordering on multisets over M.
5. if (M,) is well-founded so is > py1-
6. if (M,) is total so is >mul-

Please recall that multisets are finite.

The lexicographic ordering on words is not well-founded if words of
arbitrary length are considered. Starting from the standard ordering
on the alphabet, e.g., the following infinite descending sequence can

be constructed: b > ab > aab > It becomes well-founded if it is lexicograph-
ically combined with the length ordering, see Exercise 77.

Lemma 1.4.8 (Koénig’s Lemma). Every finitely branching tree with infinitely
many nodes contains an infinite path.

1.5 Induction

More or less all sets of objects in computer science or logic are defined induc-
tively. Typically, this is done in a bottom-up way, where starting with some
definite set, it is closed under a given set of operations.

Example 1.5.1 (Inductive Sets). In the following, some examples for induc-
tively defined sets are presented:

1. The set of all Sudoku problem states, see Section 1.1, consists of the set of
start states (N; T; T) for consistent assignments N plus all states that can
be derived from the start states by the rules Deduce, Conflict, Backtrack,
and Fail. This is a finite set.

2. The set N of the natural numbers, consists of 0 plus all numbers that can
be computed from 0 by adding 1. This is an infinite set.

3. The set of all strings ¥* over a finite alphabet 3. All letters of X are
contained in ¥* and if v and v are words out of ¥* so is the word uwv, see
Section 1.2. This is an infinite set.

All the previous examples have in common that there is an underlying well-
founded ordering on the sets induced by the construction. The minimal elements
for the Sudoku are the problem states (N; T; T), for the natural numbers it is 0
and for the set of strings it is the empty word. Now in order to prove a property
of an inductive set it is sufficient to prove it (i) for the minimal element(s) and
(ii) assuming the property for an arbitrary set of elements, to prove that it holds
for all elements that can be constructed “in one step” out those elements. This
is the principle of Noetherian Induction.

20 CHAPTER 1. PRELIMINARIES

Theorem 1.5.2 (Noetherian Induction). Let (M,) be a well-founded order-
ing, and let @ be a predicate over elements of M. If for all m € M the implication

if Q(m’), for all m’ € M so that m = m/, (induction hypothesis)
then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all m € M.

Proof. Let X = {m € M | Q(m) does not hold}. Suppose, X # 0. Since (M, >~
) is well-founded, X has a minimal element m;. Hence for all m’ € M with
m’ < my the property Q(m’) holds. On the other hand, the implication which
is presupposed for this theorem holds in particular also for mq, hence Q(m1)
must be true so that m; cannot be in X - a contradiction. O

Note that although the above implication sounds like a one step proof tech-
nique it is actually not. There are two cases. The first case concerns all elements
that are minimal with respect to < in M and for those the predicate) needs
to hold without any further assumption. The second case is then the induction
step showing that by assuming @ for all elements strictly smaller than some m,
Q@ holds for m.

Now for context free grammars. Let G = (N,T, P, S) be a context-free
grammar (possibly infinite) and let ¢ be a property of T (the words over the
alphabet T' of terminal symbols of G).

q holds for all words w € L(G), whenever one can prove the following two
properties:

1. (base cases)
g(w’) holds for each w’ € T* so that X ::= w' is a rule in P.

2. (step cases)
If X = wyXowy ... w, Xpwpy1 is in P with X; € N, w; € T*, n > 0,
then for all w] € L(G, X;), whenever g(w}) holds for 0 < i < n, then also
q(wowjwy . .. wpwh wyy1) holds.

Here L(G, X;) C T* denotes the language generated by the grammar G from
the nonterminal X;.

Let G = (N, T, P,S) be an unambiguous (why?) context-free grammar. A
function f is well-defined on L(G) (that is, unambiguously defined) whenever
these 2 properties are satisfied:

1. (base cases)
f is well-defined on the words w’ € T* for each rule X ::= w’ in P.

2. (step cases)
If X = woXow; ... wpXpwp41 isarulein P then f(wowjws ... waw, Wni1)
is well-defined, assuming that each of the f(w}) is well-defined.

1.6. REWRITE SYSTEMS 21

1.6 Rewrite Systems

The final ingredient to actually start the journey through different logical sys-
tems is rewrite systems. Here I define the needed computer science background
for defining algorithms in the form of rule sets. In Section 1.1 the rewrite rules
Deduce, Conflict, Backtrack, and Fail defined an algorithm for solving 4 x 4
Sudokus. The rules operate on the set of Sudoku problem states, starting with
a set of initial states (IV; T; T) and finishing either in a solution state (N; D; T)
or a fail state (N; T;L). The latter are called normal forms (see below) with

respect to the above rules, because no more rule is applicable to a solution state
(N;D;T) or a fail state (N; T; L).

Definition 1.6.1 (Rewrite System). A rewrite system is a pair (M, —), where
M is a non-empty set and — C M x M is a binary relation on M. Figure 1.4
defines the needed notions for —.

=0 = {(a,a)|ae M} identity

il = i i+ 1-fold composition

=T = Uso =" transitive closure

—=* = Ui =" = 2T U0 reflezive transitive closure
== = SUu=0 reflexive closure

-1 =« ={(be)|c—=b} inverse

& = 2 U« symmetric closure

ot = (&)t transitive symmetric closure
o = (&) refl. trans. symmetric closure

Figure 1.4: Notation on —

For a rewrite system (M, —) consider a sequence of elements a; that are
pairwise connected by the symmetric closure, i.e., a3 <> az <> az... & ay.
Then a; is called a peak in such a sequence, if actually a;_1 < a; = a;41.

Actually, in Definition 1.6.1 I overload the symbol — that has already
denoted logical implication, see Section 1.4, with a rewrite relation.
This overloading will remain throughout this book. The rule symbol

= is only used on the meta level in this book, e.g., to define the Sudoku al-
gorithm on problem states, Section 1.1. Nevertheless, these meta rule systems
are also rewrite systems in the above sense. The rewrite symbol — is used on
the formula level inside a problem state. This will become clear when I turn to
more complex logics starting from Chapter 2.

Definition 1.6.2 (Reducible). Let (M, —) be a rewrite system. An element
a € M is reducible, if there is a b € M such that a — b. An element a € M is in
normal form (irreducible), if it is not reducible. An element ¢ € M is a normal
form of b, if b =* ¢ and c is in normal form, denoted by ¢ = b). Two elements
b and c are joinable, if there is an a so that b —* a *+ ¢, denoted by b | c.

22 CHAPTER 1. PRELIMINARIES

Traditionally, ¢ = b implies that the normal form of b is unique. However,
when defining logical calculi as abstract rewrite systems on states in subsequent
chapters, sometimes it is useful to write ¢ = b) even if ¢ is not unique. In this
case, ¢ is an arbitrary irreducible element obtained from reducing b.

Definition 1.6.3 (Properties of —). A relation — is called

Church-Rosser if b <* cimplies b | ¢

confluent if b "« a —* cimplies b | ¢

locally confluent if b < a — c implies b | ¢

terminating if there is no infinite descending chain by — by ...
normalizing if every b € A has a normal form

convergent if it is confluent and terminating

Lemma 1.6.4. If — is terminating, then it is normalizing.

The reverse implication of Lemma 1.6.4 does not hold. Assuming this
is a frequent mistake. Consider M = {a,b, ¢} and the relation a — b,
b — a, and b — c. Then (M, —) is obviously not terminating, because
we can cycle between a and b. However, (M, —) is normalizing. The normal form
is ¢ for all elements of M. Similarly, there are rewrite systems that are locally

confluent, but not confluent, see Figure . In the context of termination the
property holds, see Lemma 1.6.6.

Theorem 1.6.5. The following properties are equivalent for any rewrite system
(M, —):

(i) — has the Church-Rosser property.

(i) — is confluent.

Proof. (i) = (ii): trivial.
(ii) = (i): by induction on the number of peaks in the derivation b «+* ¢. O

Lemma 1.6.6 (Newman’s Lemma : Confluence versus Local Confluence). Let
(M,—) be a terminating rewrite system. Then the following properties are
equivalent:

(i) — is confluent

(ii) — is locally confluent

Proof. (i) = (ii): trivial.

(ii) = (i): Since — is terminating, it is a well-founded ordering (see Ex-
ercise ?77). This justifies a proof by Noetherian induction where the property
Q(a) is “a is confluent”. Applying Noetherian induction, confluence holds for
all a’ € M with a =% a’ and needs to be shown for a. Consider the confluence
property for a: b *< a —* ¢. If b = a or ¢ = a the proof is done. For otherwise,
the situation can be expanded to b *— b’ < a — ¢ —* ¢ as shown in Figure 1.5.
By local confluence there is an a’ with ¥ —* a’ *+ . Now V/, ¢’ are strictly
smaller than a, they are confluent and hence can be rewritten to a single a”,
finishing the proof (see Figure 1.5). O

1.7. CALCULI: REWRITE SYSTEMS ON LOGICAL STATES 23

*
a c’/ c
L.C.
koovok
b’ »a’ LH.
I.H.
k * v %k kv ok
b > d >a

Figure 1.5: Proof of (ii) = (i) of Newman’s Lemma 1.6.6

Lemma 1.6.7. If — is confluent, then every element has at most one normal
form.

Proof. Suppose that some element a € A has normal forms b and ¢, then b *+
a —* ¢. If — is confluent, then b —* d *< ¢ for some d € A. Since b and ¢ are
normal forms, both derivations must be empty, hence b =% d %— ¢, so b, ¢, and
d must be identical. O

Corollary 1.6.8. If — is normalizing and confluent, then every element b has
a unique normal form.

Proposition 1.6.9. If — is normalizing and confluent, then b <+* ¢ if and only
if b} = cl.

Proof. Either using Theorem 1.6.5 or directly by induction on the length of the
derivation of b <* c. O

1.7 Calculi: Rewrite Systems on Logical States

The previous section introduced computational properties of rewrite systems.
There, for a rewrite system (M, —), the elements of M are abstract. In this
section I assume that the elements of M are states including formulas of some
logic. If the elements of M are actually such states, then a rewrite system (M, —)
is also called a calculus. In this case, in addition to properties like termination
or confluence, properties such as soundness and completeness make sense as
well. Although these properties were already mentioned in Section 1.1 they are
presented here on a more abstract level.

Starting from Chapter 2 I will introduce various logics and calculi for these
logics where the below properties make perfect sense. The Sudoku language

24 CHAPTER 1. PRELIMINARIES

is a (very particular) logic as well. It motivates only partly the below no-
tions, because the boolean structure of a Sudoku formula is very simple. It
is a conjunction N of equations f(z,y) = z (see Section 1.1). Then a Su-
doku formula N is called satisfiable if it can be extended to a formula N A N’
such that all squares are defined exactly once in N A N’ and N A N’ rep-
resents a Sudoku solution. In this case the formula N A N’ is also called a
model of N. In case the Sudoku formula is not satisfiable the actual derivation
(N;T;T)=*(N;T;L) represents a proof of unsatisfiability. For example, the
Sudoku formula f(1,1) = 1A f(1,2) =2 A f(1,3) =3 A f(2,4) = 4 is unsatisfi-
able. A Sudoku formula N is valid if for any extended formula N A N’ such that
all squares are defined exactly once in N A N’ the formula N A N’ represents a
Sudoku solution. The Sudoku rewrite system investigates satisfiability.

With respect to the above definitions the only valid Sudoku formulas are
actually formulas N where values for all squares are defined in N. For otherwise,
for some undefined square an extension N’ could just add a value that violates
a Sudoku constraint.

As another example consider solving systems of linear equations over the
rationals, e.g., solving a system like

3z+4y = 4
z—y = 6.

One standard method solving such a system is variable elimination. To this
end, first two equations are normalized with respect to one variable, here I
choose y:

y =1-3
y = x —6.

|

Next the two equations are combined and normalized to an equation for the
remaining variables, here x:

eventually yielding the solution = 4 and y = —2. The below rewrite system
describes the solution process via variable elimination. It operates on a set IV
of equations. The rule Eliminate eliminates one variable from two equations via
a combination. The notion = includes the above exemplified normalizations on
the equations, in particular, transforming the equations to isolate a variable,
and transforming it into a unique form for comparison.

Eliminate {z =s,2 =t}WN =prp {v=s,z=¢s=t}UN
provided s # ¢, and s =t ¢ N

Fail {rr =@}WN =pap 0
provided ¢1,q2 € Q, ¢1 # q2

1.7. CALCULI: REWRITE SYSTEMS ON LOGICAL STATES 25

Executing the two rules on the above example with N = {3z+4y = 4,z—y =
6} yields:

N
P N U {(Je=7),
= Bliminate Ny {y =4,y = -2},

where Eliminate is first applied to y and then to x. Now no more rule is
applicable. The rewrite system terminates. It is confluent, because no equations
are eliminated from N except for rule Fail that immediately produces a normal
form. The rules are sound, because variable elimination is sound and Fail is
sound. Any solution after the application of a rule also solves the equations
before the application of a rule. So, if the initial system of equations has a
solution, the rules will identify the solution. Once the rule set terminates, either
N = () and there is no solution, or a solution is present in the final N. If the
original system of equations is not under-determined, N contains an equation
x = q for each variable z where g € Q.

The LAE system is complete, because variable elimination does not rule out
any solutions. In general, this can be shown by ensuring that any solution before
the application of a rule solves also the equations after application of a rule.

For the system two normalized forms are needed. For the application of
Eliminate the two equations are transformed such that the selected variable is
isolated. For comparison, the equations are transformed in unique normal form,
e.g., in a form ayxy + ... + apx, = ¢ where a;,q € Q.

The LAE rewrite system can be further improved by adding a subsumption
rule removing redundant equations. For example, the rule

Subsume {s=t,8 =t} N =par {s=t}UN

provided s =t and ¢s’ = ¢t’ are identical for some q € Q

deletes an equation if it is a variant of an existing one that can be obtained
by multiplication with a constant. Obviously, adding this rule improves the
performance of the rewrite system, but now it is no longer obvious that the
rewrite system consisting of the rules Eliminate, Subsume, and Fail is confluent,
sound, terminating, and complete.

In general, a calculus consists of inference and reduction rewrite rules. While
inference rules add formulas of the logic to a state, reduction rules remove
formulas from a state or replace formulas by simpler ones.

A calculus or rewrite system on some state can be sound, complete, strongly
complete, refutationally complete or terminating. Terminating means that it
terminates on any input state, see the previous section. Now depending on
whether the calculus investigates validity (unsatisfiability) or satisfiability of
the formulas contained in the state the aforementioned notions have (slightly)
different meanings.

26 CHAPTER 1. PRELIMINARIES
Validity Satisfiability

Sound If the calculus derives a | If the calculus derives sat-
proof of validity for the | isfiability of the formula, it
formula, it is valid. has a model.

Complete If the formula is valid, a | If the formula has a model,
proof of validity is deriv- | the calculus derives satis-
able by the calculus. fiability.

Strongly For any validity proof of | For any model of the for-

Complete the formula, there is a | mula, there is a derivation
derivation in the calculus | in the calculus producing
producing this proof. this model.

There are some assumptions underlying these informal definitions. First, the
calculus actually produces a proof in case of investigating validity, and in case of
investigating satisfiability it produces a model. This in fact requires the specific
notion of a proof and a model. Then soundness means in both cases that the
calculus has no bugs. The results it produces are correct. Completeness means
that if there is a proof (model) for a formula, the calculus could eventually
find it. Strong completeness requires in addition that any proof (model) can
be found by the calculus. A variant of a complete calculus is a refutationally
complete calculus: a calculus is refutationally complete, if for any unsatisfiable
formula it derives a proof of contradiction. Many automated theorem procedures
like resolution (see Section 2.6), or tableaux (see Section 2.4) are actually only
refutationally complete.

With respect to the above notions, the Sudoku calculus is complete but not
strongly complete for satisfiability.

Historic and Bibliographic Remarks

For context free languages see [2].

Chapter 2

Propositional Logic

A logic is a formal language with a mathematically precise semantics. A formal
language is rigidly defined by a grammar and there are efficient algorithms that
can decide whether a string of characters belongs to the language or not. The
semantics is typically a notion of truth based on the notion of an abstract model.
Propositional logic is concerned with the logic of propositions. In propositional
logic from the propositions “Socrates is a man” and “If Socrates is a man then
Socrates is mortal” the conclusion “Socrates is mortal” can be derived. The logic
is expressive enough to talk about propositions, but not, e.g., about individuals.
This will be possible in first-order logic (Chapter ?7), a proper extension of
propositional logic.

Nevertheless, propositional logic is an interesting candidate for many appli-
cations. For example, our overall computer technology is based on propositions,
i.e., bits that can either become true or false. The representation of numbers
on a computer is based on fixed length bit-vectors rather than on the abstract
concept of an arbitrarily large number as known from math. Hardware is de-
signed on a “logical level” that meets to a large extend propositional logic and
is, therefore, the currently most well-known application of propositional logic
reasoning in computer science.

2.1 Syntax

Consider a finite, non-empty signature X of propositional variables, the “alpha-
bet” of propositional logic. In addition to the alphabet “propositional connec-
tives” are further building blocks composing the sentences (formulas) of the
language. Auxiliary symbols such as parentheses enable disambiguation.

Definition 2.1.1 (Propositional Formula). The set PROP(X) of propositional
formulas over a signature ¥ is inductively defined by:

27

28 CHAPTER 2. PROPOSITIONAL LOGIC

PROP(X) Comment

1L connective | denotes “false”

T connective T denotes “true”

P for any propositional variable P € 3
(—9) connective — denotes “negation”

(o N Y) connective A denotes “conjunction”
(o V) connective V denotes “disjunction”

(p = 1) connective — denotes “implication”
(¢ <> ¢)) connective <> denotes “equivalence”

where ¢,9 € PROP(X).

The above definition is an abbreviation for setting PROP(X) to be the
language of a context free grammar PROP(X) = L((N,T, P,S)) (see Defini-
tion 1.3.9) where N = {¢, v}, T =S U{(,)} U{L, T,—,A,V,—, <>} with start
symbol rules S = ¢ [4,6 = L | T | (=¢) | (¢A0) | (6V4) | (6 = v) | (¢ & ¥,
¥ = ¢, and ¢ = P, for every P € .

As a notational convention we assume that — binds strongest and we omit
outermost parenthesis. So =P V @ is actually a shorthand for ((—=P) Vv Q). For
all other logical connectives parenthesis are explicitly shown if needed. The
connectives A and V are actually associative and commutative, see the next
Section 2.2. Therefore, the formula ((P A Q) A R) can be written P A Q A R
without causing confusion.

The connectives A and V are introduced as binary connectives. They
are associative and commutative as already mentioned above. When
implementing formulas both connectives are typically considered to

be of variable arity. This saves both space and enables more efficient algorithms
for formula manipulation.

Definition 2.1.2 (Atom, Literal, Clause). A propositional variable P is called
an atom. It is also called a (positive) literal and its negation —P is called a
(negative) literal. The functions comp and atom map a literal to its complement,
or atom, respectively: if comp(—P) = P and comp(P) = —-P, atom(—P) = P
and atom(P) = P for all P € ¥. Literals are denoted by letters L, K. Two literals
P and —P are called complementary. A disjunction of literals L1 V...V L, is
called a clause. A clause is identified with the multiset of its literals.

The length of a clause C, i.e., the number of literals, is denoted by |C| accord-
ing to the cardinality of its multiset interpretation. Automated reasoning is very
much formula manipulation. In order to precisely represent the manipulation of
a formula, we introduce positions.

Definition 2.1.3 (Position). A position is a word over N. The set of positions
of a formula ¢ is inductively defined by

pos(¢) {e}ifpe{T,Llorpex
pos(—¢) = {e}U{lp|p € pos(¢)}
pos(¢ o) {e}U{lp|pe€pos(¢)} U{2p|p € pos(¥)}

2.2. SEMANTICS 29

where o € {A,V, =, <}

The prefix order < on positions is defined by p < ¢ if there is some p’ such
that pp’ = ¢. Note that the prefix order is partial, e.g., the positions 12 and 21
are not comparable, they are “parallel”, see below. The relation < is the strict
part of <, i.e.,p < ¢ if p < g but not ¢ < p. The relation || denotes incomparable,
also called parallel positions, i.e., p || ¢ if neither p < g, nor ¢ < p. A position p
is above q if p < q, p is strictly above q if p < ¢, and p and ¢ are parallel if p || q.

The size of a formula ¢ is given by the cardinality of pos(¢): |¢| := | pos(@)|.
The subformula of ¢ at position p € pos(¢) is inductively defined by ¢|. := ¢,
ﬁ(b‘lp = ¢|p, and ((bl o ¢2)|ip = ¢i|p where ¢ € {1,2}, o € {/\,\/,—),(—)}.
Finally, the replacement of a subformula at position p € pos(¢) by a formula
is inductively defined by 3[y]. := 1, (=0)[t]1, = ~6[¢]y, and (61 0 ¢)[]1y ==
(6161 0 62), (610 62)]z 1= (61 0 G[]), where o € (A, V, —, &3},

Example 2.1.4. The set of positions for the formula ¢ = (P A Q) — (P V Q)
is pos(¢) = {¢, 1,11, 12, 2,21, 22}. The subformula at position 22 is @, ¢|22 = Q
and replacing this formula by P < @ results in ¢[P + Qlaa = (P A Q) —
(PV (P Q).

A further prerequisite for efficient formula manipulation is the notion of the
polarity of the subformula ¢|, of ¢ at position p. The polarity considers the
number of “negations” starting from ¢ at position € down to p. It is 1 for an
even number of explicit or implicit negation symbols along the path, —1 for an
odd number and 0 if there is at least one equivalence connective along the path.

Definition 2.1.5 (Polarity). The polarity of the subformula ¢|, of ¢ at position
p € pos(¢) is inductively defined by

pol(¢,e) = 1
pol(=¢,1p) = —pol(¢,p)
pol(¢y o ¢o,ip) = pol(¢s,p) if o€ {A,V}, i€ {1,2}
pol(¢1 — ¢2,1p) = —pol(¢1,p)
pol(¢1 — ¢2,2p) := pol(d2,p)
pol(¢ > ¢o,ip) = 0 if ie{1,2}

Example 2.1.6. Reconsider the formula ¢ = (A A B) — (A V B) of Exam-
ple 2.1.4. Then pol(¢,1) = pol(¢,11) = —1 and pol(¢,2) = pol(¢,22) = 1. For
the formula ¢ = (AA B) <> (AV B) we get pol(¢’,e) = 1 and pol(¢’,p) = 0 for
all other p € pos(¢'), p # e.

2.2 Semantics

In classical logic there are two truth values “true” and “false” which we shall
denote, respectively, by 1 and 0. There are many-valued logics [31] having more
than two truth values and in fact, as we will see later on, for the definition of

30 CHAPTER 2. PROPOSITIONAL LOGIC

some propositional logic calculi, we will need an implicit third truth value called
“undefined”.
Definition 2.2.1 ((Partial) Valuation). A X-valuation is a map

A:¥ —{0,1}.

where {0,1} is the set of truth values. A partial X-valuation is a map A" : ¥ —
{0,1} where ¥’ C 3.

Definition 2.2.2 (Semantics). A Y-valuation A is inductively extended from
propositional variables to propositional formulas ¢, € PROP(X) b

A(L) == 0

A(T) = 1

A(=¢) = 1-A(9)
Al ny) = min({A(¢), A(¥)})
Ao Vvy) = max({A(¢), A(¥)})
A(p = ¢) = max({1—A(¢), A(¥)})

Al <) = if A(¢) =A%) then 1 else 0

If A(¢) =1 for some E-valuation A of a formula ¢ then ¢ is satisfiable and we
write A |= ¢. In this case A is a model of ¢. If A(¢) =1 for all Y-valuations A
of a formula ¢ then ¢ is valid and we write = ¢. If there is no X-valuation A
for a formula ¢ where A(¢) = 1 we say ¢ is unsatisfiable. A formula ¢ entails
¥, written ¢ = 1, if for all ¥-valuations A whenever A = ¢ then A = .

Accordingly, a formula ¢ is satisfiable, valid, unsatisfiable, respectively, with
respect to a partial valuation A’ with domain Y, if for any valuation A with
A(P) = A/(P) for all P € ¥/ the formula ¢ is satisfiable, valid, unsatisfiable,
respectively, with respect to a A.

I call the fact that some formula ¢ is satisfiable, unsatisfiable, or valid, the
status of ¢. Note that if ¢ is valid it is also satisfiable, but not the other way
round.

Valuations of propositional logic collapse with interpretations. Given a for-
mula ¢ and an interpretation (valuation) A such that A(¢) = 1 then the inter-
pretation A is also called a model for ¢.

Valuations can be nicely represented by sets or sequences of literals that do
not contain complementary literals nor duplicates. If A is a (partial) valuation
of domain ¥ then it can be represented by the set {P | P € ¥ and A(P) =1} U
{=P | P € ¥ and A(P) = 0}. Another, equivalent representation are Herbrand
interpretations that are sets of positive literals, where all atoms not contained
in an Herbrand interpretation are false. If A is a total valuation of domain X
then it corresponds to the Herbrand interpretation {P | P € ¥ and A(P) = 1}.

Please note the subtle difference between an Herbrand interpretation
and a valuation represented by a set of literals. The latter can be

partial with respect to a formula whereas the former is always total

2.2. SEMANTICS 31

by definition. For example, the empty Herbrand interpretation assigns false to
all propositional variables.

For example, for the valuation A = {P,—Q} the truth value of PV Q is
A(PVvQ)=1,for PVRitis A(PVR) =1, for = PAR it is A(-PAR) =0, and
the status of =P V R cannot be established by A. In particular, A is a partial
valuation for ¥ = {P,Q, R}. A literal L is defined with respect to a partial
valuation A if L € A or comp(L) € A.

Example 2.2.3. The formula ¢ V —¢ is valid, independently of ¢. According
to Definition 2.2.2 we need to prove that for all Y-valuations A of ¢ we have
A(p V =¢) = 1. So let A be an arbitrary valuation. There are two cases to
consider. If A(¢) = 1 then A(¢ V —¢) = 1 because the valuation function takes
the maximum if distributed over V. If A(¢) = 0 then A(—¢) = 1 and again by
the before argument A(¢ V —¢) = 1. This finishes the proof that = ¢ V —¢.

Theorem 2.2.4 (Deduction Theorem). ¢ = ¢ iff = ¢ — ¢

Proof. (=) Suppose that ¢ entails ¢ and let A be an arbitrary 3-valuation.
We need to show A = ¢ — ¢. If A(¢) = 1, then A(¢)) = 1, because ¢ entails
¥, and therefore A = ¢ — 1. For otherwise, if A(¢) = 0, then A(¢p —) =
max({(1—.A(¢)), A(¥)}) = max({(1, A(¥)}) = 1, independently of the value of
A(%). In both cases A = ¢ — 1.

(<) By contraposition. Suppose that ¢ does not entail 1. Then there exists
a X-valuation A such that A = ¢, A(¢) = 1 but A £~ ¢, ie., A(y) = 0. By
definition, A(¢ —) = max({(1 — A(¢)), A(¥)}) = max({(1 —1),0}) = 0,
hence ¢ — 1) does not hold in A. O

So both writings ¢ = ¢ and | ¢ — ¢ are actually equivalent. I extend
the former notion to sets or sequences on the left denoting conjunction. For

example, x, ¢ = 1 is short for x A ¢ = 1.

Proposition 2.2.5. The equivalences of Figure 2.1 are valid for all formulas

¢5¢5X'

Note that the formulas ¢ A 1) and ¥ A ¢ are equivalent. Nevertheless,
recalling the problem state definition for Sudokus in Section 1.1 the
two states (N; f(2,3) = 1A f(2,4) = 4;T) and (N; f(2,4) = 4 A

f(2,3) = 1;T) are significantly different. For example, it can be that the first
state can lead to a solution by the rules of the algorithm where the latter
cannot, because the latter implicitly means that the square (2,4) has already
been checked for all values smaller than 4. This reveals the important point
that arguing by logical equivalence in the context of a rule set manipulating
formulas, a calculus, can lead to wrong results.

Lemma 2.2.6 (Formula Replacement). Let ¢ be a propositional formula con-
taining a subformula ¢ at position p, i.e., ¢|, = . Furthermore, assume

= & x. Then = ¢ & 9[x],.

32 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. By induction on |p| and structural induction on ¢. For the base step let
p = € and A be an arbitrary valuation.

A(p) = A(Y) (by definition of position)
A(X) (because A = ¢ < x)
A(é[x]e) (by definition of replacement)

For the induction step the lemma holds for all positions p and has to be
shown for all positions ip. By structural induction on ¢, I show the cases where
¢ = —¢1 and ¢ = @1 — ¢9 in detail. All other cases are analogous.

If ¢ = =¢1 then showing the lemma amounts to proving = —¢1 <> —¢1[x]1p
Let A be an arbitrary valuation.

A(=¢1) =1— A(¢1) (expanding semantics)
=1—A(¢1[x]p) (by induction hypothesis)
= A(=¢[x]1p) (contracting semantics)

If = ¢1 — ¢o then showing the lemma amounts to proving the two cases

F (¢1 = ¢2) < (61 = d2)[x]1p and E (d1 — ¢2) < (1 — ¢2)[x]2p- Both

cases are similar so I show only the first case. Let A be an arbitrary valuation.

A(p1 — ¢2) = max({(1 — A(¢1)), A(p2)}) (expanding semantics)
=max({(1 — A(¢1[x]p)), A(¢2)}) (by induction hypothesis)
= A((¢1 — ¢2)[x]1p) (applying semantics)

O

Lemma 2.2.7 (Polarity Dependent Replacement). Consider a formula ¢, po-
sition p € pos(¢), pol(¢,p) = 1 and (partial) valuation A with A(¢) = 1. If for
some formula ¢, A(1p) = 1 then A(¢[1)],) = 1. Symmetrically, if pol(¢,p) = —1
and A(¢) = 0 then A(Q[¢],) = 1. If pol(¢,p) = 1 and A(¢) = 1 then

A(9) = A(9[¢]p)-

Proof. Exercise 7?7: by induction on the length of p. O

Note that the case for the above lemma where pol(¢,p) = 0 is actually
Lemma 2.2.6.

The equivalences of Figure 2.1 show that the propositional language
introduced in Definition 2.1.1 is redundant in the sense that certain
connectives can be expressed by others. For example, the equivalence
Eliminate — expresses implication by means of disjunction and negation. So for
any propositional formula ¢ there exists an equivalent formula ¢’ such that ¢’
does not contain the implication connective. In order to prove this proposition

the above replacement lemma is key.

