More Consequences of Falsifying SETH
and the Orthogonal Vectors Conjecture
[Full version]

Amir Abboud* Karl Bringmann® Holger Dell* Jesper Nederlof$

February 24, 2018

Abstract

The Strong Exponential Time Hypothesis and the OV-conjecture are two popular hardness
assumptions used to prove a plethora of lower bounds, especially in the realm of polynomial-time
algorithms. The OV-conjecture in moderate dimension states there is no € > 0 for which an
O(n?*~*poly(d)) time algorithm can decide whether there is a pair of orthogonal vectors in a
given set of size n that contains d-dimensional binary vectors.

We strengthen the evidence for these hardness assumptions. In particular, we show that if the
OV-conjecture fails then two problems for which we are far from obtaining even tiny improvements
over exhaustive search would have surprisingly fast algorithms. If the OV conjecture is false,
then there is a fixed € > 0 such that:

1. for all d and all large enough k, there is a randomized O(n(l_s)k) time algorithm for the
zero-weight k-clique problem and for the min-weight k-clique problem on d-hypergraphs
with n vertices. In particular, this shows that the OV-conjecture is implied by the recent
popular Weighted k-Clique conjecture.

2. for all ¢, the satisfiability of sparse TC' circuits on n inputs (i.e. circuits with cn wires,
depth clogn, and negation, AND, OR, and threshold gates) can be computed in time
o((2—¢e)™).

*IBM Almaden Research Center, CA, USA, amir.abboud@ibm.com

fMax Planck Institute for Informatics, Saarland Informatics Campus, Germany. kbringma@mpi-inf .mpg.de

Saarland University and Cluster of Excellence (MMCI), Germany. hdell@mmci.uni-saarland.de

SEindhoven University of Technology, The Netherlands. j.nederlof@tue.nl. Supported by NWO Veni grant
639.021.438.

1 Introduction

The Strong Exponential Time Hypothesis (SETH) is a cornerstone of contemporary algorithm
design that recently gained extensive popularity in usage. As originally formulated by Impagliazzo
and Paturi [36], SETH postulates that exhaustive search is essentially best possible to decide the
satisfiability of bounded-width CNF formulas. Closely related, the orthogonal vectors (OV) problem
is, given two sets A and B of n vectors from {0, 1}d, to decide whether there are vectors a € A and
b € B such that a and b are orthogonal (in Z%). It is known [57] that SETH implies the following
hardness conjecture for the orthogonal vectors problem

Conjecture 1.1 (Moderate-dimension Orthogonal Vectors Conjectureﬁ (OVC,;5)). There are no
£,0 > 0 such that OV with dimension d = n° can be solved in time O(n*¢).

The Consequences of OVC,; and SETH. The area to which OVC,s (and SETH) has most
impact is the study of fine-grained complexity of problems in P. Its consequences are remarkable
in their strength, versatility, and diversity. If we assume it holds, we get lower bounds that
match existing upper bounds (up to ne) factors) for dozens of important problems from areas
all across computer science, including pattern matching and bioinformatics (e.g. [8), 10, 43 1),
graph algorithms (e.g. [50, 6 34]), computational geometry (e.g. [I7]), formal languages [11], [19],
time-series analysis [2, [20], and even economics [45] (a longer list can be found in [61]). While the
original SETH implies hardness for OV for any dimension d = w(logn), very few lower bounds really
benefit from the dimension being so small. One example are the recent hardness of approximation
results for problems such as Max Inner Product [5] (perhaps also [12] 14]). For all other results,
making the dimension smaller than in OVC, s only affects lower order terms.

Another area to which SETH has a lot of impact is the study of exact or fixed parameter tractable
algorithms, see e.g [24], 48] or the book by Cygan et al. [25]. An important subject where SETH
played an especially important role is graph problems for graphs that have good decompositions
such as small treewidth or pathwidth. Tight lower bounds based on SETH were introduced to
this area by Lokshtanov et al. [44], and SETH has greatly benefited the development of optimal
algorithms for e.g. connectivity problems [28] [26].

Evidence for OVC,; and SETH. Since unconditional lower bounds of the type Q(n!'*¢) for any
of our problems are far out of reach of current techniques, a central focus of fine-grained complexity
is to search for (other forms of) evidence for the truth of its conjectures. All previous approaches for
finding such results are discussed in Section [I.2] The focus of our work is on finding statements of
the form: If OVC,,s /SETH is false then we get breakthrough algorithms for other famous problems.
A highly desirable and longstanding open question is to prove that falsifying OVC, s also refutes
other popular conjectures such as APSPP|or 3-SUM]

"Note that using fast rectangular matrix multiplication (see e.g. [33]) the problem can be solved in O(n?) time as
long as § < 0.3.

*We adopt the naming introduced by Gao et al. [34].

3The APSP problem is to compute all pairwise distances in a graph (given by its adjacency matrix) on n nodes
and with edges weights in some polynomial range. It is conjectured to require n®~°™) time, and many problems,
especially on graphs, are known to be equivalent or APSP-hard, e.g. [511 [62] [6] [3, 52} [7] [29].

4The 3-SUM problem is to decide if a given set of n integers contains three that sum to zero. It is conjectured
that the problem requires n?~°®) time. Many problems, especially in computational geometry, are known to be
3-SUM-hard, see [32].

The Weighted k-Clique Conjecture. Closely related to APSP is a conjecture about the
complexity of Clique which has been increasingly popular in the last few years. Given a graph on
n nodes and O(n?) edges with edge-weights in some polynomial range, how fast can we find the
k-clique of minimum weight? The exhaustive search algorithm solves this Min-Weight-k-Clique
problem in O(nk) time, and for £ = 3 the problem is known to be subcubically-equivalent to
APSP [63]: we can solve it in O(n®~¢) time for some ¢ > 0 if and only if APSP is in O(n3~¢)
time for some & > 0. For all integers k > 3, there is a simple reduction to the k = 3 case, and
using the fastest known APSP algorithm of Williams [59, [22], we can solve Min-Weight-k-Clique in
nk/ 2@(VIogn) time. Due to the equivalence, the APSP Conjecture states that the k = 3 case requires
n3=°(M) time, so it is natural to conjecture that for any constant k& > 3 the complexity is also nf—°(),

Conjecture 1.2 (Weighted k-Clique Conjecture). No algorithm finds a minimum-weight k-clique
in a graph on n nodes with weights in {—M, ..., M} in O(n(*==)* .polylog M) time, for any e > O

Note that this conjecture implies the APSP conjecture, and therefore all the known APSP lower
bounds [51, 62} [©, [3, 52}, [7, 29]. Further lower bounds under it (that are not known to hold under
APSP) were shown for the Local Alignment problem from Bioinformatics by Abboud, Vassilevska
W. and Weimann [§], the Max Rectangle problem for points in the plane, a basic problem in
computational geometry, by Backurs, Dikkala, and Tzamos [9], the Viterbi problem from Machine
Learning by Backurs and Tzamos [13], and recently the Tree Edit Distance problem by Bringmann,
Gawrychowski, Mozes, and Weimann [18].

1.1 Our Results

Consequences of Falsifying OVC for Clique Problems. Using a combination of simple tricks
and gadgets, we design a tight randomized reduction from the Min-Weight-k-Clique problem to OV,
showing that: if OVC,;s is false, then so is the Weighted k-Clique conjecture! Thus, we prove that
most “SETH-based” lower bounds in P can be based on this Clique conjecture. Since we already
know that the weighted Clique conjecture implies the APSP conjecture, one can consider this to
be a unification of the APSP and OV conjecturesﬂ The impact of our results on (part of) the
landscape of Hardness in P is depicted in Figure [I.1l We thus isolate Min-Weight-k-Clique as the
core hardness for the majority of problems in P with known conditional lower bounds (the main
exceptions are “3-SUM hard” problems).

Going beyond the implication to the Clique conjecture, we show that falsifying OVC, s leads
to improved algorithms for finding weighted cliques even in hypergraphs. A d-hypergraph is a
hypergraph in which all edges are of size at most d. A clique of a d-hypergraph G is a subset
X C V(@) such that for every e C X of size at most d we have e € E(G). Besides the unweighted
version of clique in hypergraphs, we also study weighted versions of this problem where we are
additionally given an edge weight function w : E(G) — Z, and a target integer t € Z. Specifically, in
the Ezact- Weight-k-Cliqgue and Min- Weight-k-Cligue problems we need to find a clique X of size k
that satisfies respectively Y .cx w(e) =t and >, x w(e) < t. Our first result now reads as follows:

Theorem 1.3. If OVC,s is false, then for some € > 0 there is for every d a sufficiently large
k = k(d,e) such that there are algorithms that solve

e k-Clique on d-hypergraphs in O(n*=)%) time.

®In this work we will hardly distinguish between randomized and deterministic algorithms, as even randomized
algorithms with the desired running times would constitute big breakthroughs.

SPreviously, it was known that the (min, 4)-Convolution problem [27] provides a unification of APSP and 3-SUM:
if we assume that it requires n?>~°® time, both the APSP and 3-SUM conjectures follow.

Min-Weight
k-Clique

(CNF-SAT)

Maximum Weight Rectangle
Improving Viterbi’s Algorithm
Tree Edit Distance

Min-Weight
3-Clique

Various Problems on
Strings, Graphs, etc.

Various Problems
on Graphs

Figure 1: Illustration of the landscape of Hardness in P and the impact of Theorem the bold
black arrow. An arrow from problem A to problem B indicates that improving the runtime of
problem B from B(n) to (B(n))!~¢ implies an improvement for problem A from A(n) to (A(n))'~=.

o Exact- Weight-k-Clique on d-hypergraphs with weights in {—M, ..., M} in randomized time at
most O(n(1=4)% . polylog M).

o Min- Weight-k-Clique on d-hypergraphs with weights in {—M, ..., M} in randomized time at
most O(n1=9)* . polylog M).

Our reduction is composed of two main stages. In the first one, we reduce Min-Weight-k-Clique
on graphs to unweighted k-clique on 4-hypergraphs, where each hyper-edge has cardinality at most
4. More generally, we reduce Min-Weight-k-Clique in d-hypergraphs to k-Clique in 2d-hypergraphs.
This reduction, in turn, has multiple “weight reduction” steps: We start with a standard hashing
trick to reduce the weights to a polynomial range. Then, to reduce the weights further, we chop
the bits of the numbers into vectors and then use a squaring trick to combine all the coordinates.
This trick is borrowed from [4], where it was used to reduce node weights in graphs. We show
that it can also be used to reduce edge weights, albeit we have to transform our graph into a
hypergraph. Finally, once the weights are small enough, we remove them completely via exhaustive
search through tuples with certain sums. In the second stage, we reduce the unweighted hyper-graph
problem to OV. Here, we map each node to a vector by designing a natural encoding of the incident
hyper-edges into the coordinates, so that an orthogonality check (among k vectors) corresponds to
checking that k nodes form a hyper-clique. (Our second set of results will use “number removal”
tricks of a similar flavor in order to reduce SAT on circuits with threshold gates to SAT on CNF
formulas, as in SETH.)

Even 3-hypergraphs can be harder to handle than graphs. For example, in the unweighted case,
k-Clique on graphs can be solved in O(n®7*) time [47, 1], whereas on 3-uniform hypergraphs any
O(n*(1=9)) time would be a breakthrough: it would imply faster algorithms for MAX-3-SAT, a
longstanding open question, via a known reduction (outlined in Section . This reduction combined
with our theorem allows us to base all OV lower bounds on the hardness of MAX-k-SAT rather
than just k-SAT. Previously, authors have had to work harder to show that their lower bound is
based on the better assumption that MAX-k-SAT is hard, rather than SETH [2, [7, 42]. Our results
imply that this was unnecessary since there is a direct reduction from Max-k-SAT to OV.

Corollary 1.4. If OVC,;s is false, then there exists an € > 0 such that for any k Maz-k-SAT can
be solved O*((2 —€)™) time.

Finally, we remark that our reduction can also handle the Zero-Weight-k-Clique problem which
asks for a k-clique of weight exactly zero, which is in fact at least as hard as the minimization
version [46]. While the best known algorithms for Min-Weight-k-Clique run in time n* /2%(vIogn)
[59, 22], getting such superpolylogarithmic shavings for the Zero-Weight-k-Clique problem is an
open question. The k = 3 case is particularly interesting, since solving Zero-Weight-3-Clique in
O(n®>¢) time does not only refute APSP but it also refutes the 3-SUM Conjecture [62] 49, 41].

Consequences of Falsifying SETH for SAT on Sparse Circuits. Next, we turn our attention
to other forms of evidence, which are based on more general SAT problems. This yields evidence
not only for OVC,,s but even for SETH, which is important since for some problems, especially in
the exponential time regime, only SETH-based lower bounds are known.

In some sense, SETH is the strongest possible assumption about the hardness of SAT not
know to be false: SETH asserts that if the best running time for k-CNF-SAT is 2(ssEo(1)n
then limg_,oo s = 1. If we would simplify CNFs further, say to 10-CNFs or to DNFs, then it would
be false. In other words, SETH claims that the weakest functions we do not know how to analyze
for satisfiability in O*((2 — €)™) time are hard. In fact, it does not even talk about a single problem
that we think is hard, but about a sequence of problems, each of which we know to have a faster
algorithm than exhaustive search. This is great from a perspective of reductions, but is bad if we
want to have confidence. Indeed, there are even algorithms that get substantial n*() speed-ups over
2" for CNF formulas of unbounded width (see e.g. [16} 21]) but if we go a bit higher in complexity,
say to linear size constant depth circuits with majority gates, then getting such algorithms is a
big open question: they would resolve Williams’ question [60] of whether his framework for circuit
lower bounds can prove that NEXP is not in TC? — a result that might be facing the natural proofs
barrier.

Note that the satisfiability of en-size TC -circuits of depth two has a known O*((2 — &.)™)-time
algorithm [37, 23], but the constant ¢. tends to 0 as ¢ grows. For larger depths, such algorithms are
known for AC? [35] but not for TCC.

We show that a refutation of SETH would provide a big step forward on all these questions:

Theorem 1.5. If SETH fails, then there is an € > 0 such that, for all constants ¢ and d, the
satisfiability of depth-d threshold circuits with cn wires can be determined in time O*((2 —¢)"™).

This result is akin to results of Santhanam and Srinivasan [53] and Dantsin and Wolpert [30],
and Cygan et al. [24] who showed that refuting SETH implies faster SAT algorithms for determining
satifiability of linear-size formulas and of AC-circuits, respectively. Our result is qualitatively
stronger, not only because we can handle a larger class of circuits, but also because, unlike CNFs,
linear-size formulas, and linear-size AC%-circuits, even n*() improvements are not known for SAT
on linear-size circuits with threshold gates of depth 4 or more. The only previous connection of this
form that we are aware of is the analogous result of Cygan et al. [24] for VSP-circuits. The latter
result is facilitated by the depth reduction result of Valiant, which shows that VSP-circuits embed
nicely into CNF-formulas. We use an additional trick that allows us to get rid of threshold gates.

Much like most lower bounds in P can be based on OVC,s rather than the OV Conjecture with
dimension d = w(logn), many SETH-based lower bounds for exponential time and parameterized
problems can be based on the slightly weaker assumption that CNF-SAT cannot be solved in
O*((2 — €)™) time, e.g. for graph problems that have small treewidth or pathwidth [44], 28], 26].

We add weight to these hardness results by showing that sufficiently fast algorithms for CNF-
SAT already imply fast algorithms for determining the satisfiability of sparse threshold circuits of
super-logarithmic depth, that is, a larger class than TC!-circuits:

Theorem 1.6. If CNF-SAT can be solved in O*((2 — €")™) time for some &' > 0, then there is
an € > 0 such that for any ¢ > 0 there is a § > 0 such that the satisfiability of threshold circuits
with depth (logn)'*° and at most cn wires can be determined in time O*((2 —)™).

The same conclusion holds if OVC, s fails, since this implies that CNF-SAT can be solved in
O*((2 — €)™) time for some ¢ > 0 via standard reductions [57].

1.2 Previous Work on Evidence for the Conjectures

All known consequences of falsifying OVC, s /SETH that we are aware of are summarized next.

It is known that these conjectures hold under certain restrictions on the algorithms. Beck and
Impagliazzo [I5] proved that a version of the popular algorithmic technique of resolution, on which
many SAT-solvers are based, is not sufficient for refuting SETH. Very recently, Kane and Williams
[40] proved that no algorithms implementable by Boolean formulas or Branching Programs can
solve OV on vectors of logarithmic dimension in subquadratic time.

More similar to our work, are results showing algorithmic consequences for other problems.
Cygan et al. [24] showed that O*((2 — &)™) time algorithms for CNF-SAT imply O*((2 — &’)") time
algorithms for four other NP-hard problems such as Hitting Set, Set-Splitting, Not-All-Equal-SAT,
and SAT on linear-size VSP-circuits. Santhanam and Srinivasan [53] and Dantsin and Wolpert [30]
showed the same for SAT on linear-size formulas and AC’-circuits, respectively. More recently,
Gao, Impagliazzo, Kolokolova, and Williams [34], showed that if OVC,s is false then we can solve
all model-checking problems over first order sentences with k quantifiers in hyper-graphs on m
edges in O(m*~¢) time. These are problems typically studied in logic and databases, and perhaps
the most famous problem in this class from the perspective of the algorithms community is the
k-Clique problem. Our work shows that even weighted versions of Clique are reducible to OV. This
is significant because O(n!=9)¥) algorithms are known for the unweighted case [47, 3I], and so the
connection of Gao et al. is not tight in this case.

Another consequence of refuting SETH that is often used as evidence in a controversial way is
that it would imply new circuit lower bounds. Specifically, it would imply that the powerful class
NEXP is not contained in the class of functions computable by linear-size VSP-circuits [58, [38].
From our Theorem [1.6] it follows that solving CNF-SAT in O*((2 — ¢/)") time also implies the
perhaps more natural result that NEXP is not in linear-size TC!.

Note we give a schematic overview of our results in Appendix [A]

2 Preliminaries

Notation. We write N for the set of natural numbers, including 0, and Z for the set of integers.
We let [n] denote {1,...,n} for n € N. For a set S, we write (‘3) for the set of all subsets of S that

have size exactly d, and (<S ;) for the set of all subsets of size at most d. A d-hypergraph G for
d € Nis a tuple (V(G), E(G)), where V(G) is a finite set of vertices and E(G) C (V<(§)) \ {0} is a
set of edges. If G is a d-hypergraph and X C V(G), then G[X] denotes the subgraph induced by X,
that is, V(G[X]) = X and E(G[X]) = E(G) N (gd) A set S C V(G) is called a clique in G if the
graph G[S] induced by S contains all edges from (<S 1) A k-clique is a clique of size k. A graph is a
2-hypergraph in which every edge has size 2. -

The O*(-) notation omits factors that are polynomial in the input size.

CNF-SAT. The k-SAT problem is to determine whether a given k-CNF formula has a satisfying
assignment. We denote the number of variables by n and define

s), =1inf{d > 0 : there exists an O*(2°") time algorithm for k-SAT } .

Let soo = limg_yo0 Sk. Impagliazzo and Paturi’s Strong Ezponential Time Hypothesis (SETH)
postulates that so, = 1 holds [36].

DAGs and Circuits. If G is a directed acyclic graph (DAG), we let N (v) denote the set of
in-neighbors of v and let d(v) = |Ng (v)| be the in-degree. The depth of G is the length of the
longest path in it.

A Boolean function is a function f : {0,1}% — {0,1} for some d € N. It is symmetric if
f(x) = f(y) holds for all z,y € {0,1}* whose Hamming weight is the same. Let B be a set of
symmetric Boolean functions. A (Boolean) circuit C' over a basis B is a pair (G, \) where G is
a directed acyclic graph and A\ € BY is a labeling of its vertex set V with elements from B. We
say that v is a A,-gate, and we require that the in-degree of v is equal to the arity of A, that
is, we have), : {0,1}9%6™) — {0,1}. The edges of G are called wires, the in-degree of a gate is
called its fan-in, and we write V(C) for V(G). The set of input gates I(C) or I(G) of C consists
of the vertices with in-degree 0, and the set of output gates O(C) or O(G) of C consists of the
vertices with out-degree 0. If x € {0, l}I(G) is a setting for the input gates, we define the C,(z) as
the value of C at v € V' on input x inductively: If v € I(C), let Cy(x) = z,, and otherwise, let
Cy(x) = M(Cyy (), ..., Cy,(x)), where vy, ..., v denotes the in-neighbors of v in G; note that this
is well-defined since G is acyclic and A, is symmetric. Slightly abusing notation, we may write C
also for the function C : {0, 1}I(G) — {0, 1}O(G) with C(7) = (Cy)yeo(q). Or we may view circuits
as mapping integers to integers in a fixed range [r] for convenience while in fact this is implemented
by storing the binary representation of these values with [lgr]| gates.

A (u,v)-path in C is a directed path in G that starts in « and ends at v. If A C V(C), we let
Rc(A,v) denote the set of vertices from which v is reachable without using vertices of A, that is,

Rc(A,v) = {u € V : there is a (u,v)-path in G[(V \ 4) U {u,v}] } . (1)

Finally, for a circuit C, a gate v € V(C), and a set A C V(C'), we define C,, 4 as the subcircuit of C
that is induced by the set Rc(A,v); note that v is the only output gate of C, 4 and its input gates
are contained in AU I(C).

We use the Boolean functions NEG(z) = -z, AND(z,y) = z Ay, OR(x,y) = =z V y and
THy : {0,1}¢ — {0,1} which is, for every positive # < n defined to be 1 if Z‘ij:l x; > 6 and
to be 0 otherwise. Note that AND(x,y) = THa(z,y) and OR(z,y) = THi(x,y). We also use
MOD,,(x1,...,z4) for m < d which is defined to be 1 if m divides 2;1:1 x; and to be 0 otherwise,
and MAJ(z1,...,2q4) = THyo(21, ..., 24)-

A Boolean circuit over the basis {NEG, AND, OR, THy}, where all gates (except for NEG) may
have unbounded fan-in, is called a threshold circuit (TC); we use AND and OR only for syntactic
convenience as they can be simulated by THy. The problem TC-SAT is given a threshold circuit C
with exactly one output gate to decide whether the circuit is satisfiable, that is, whether there
exists a setting z € {0,1}" for the n input gates such that C(z) = 1. For d € N and ¢ > 0, a
c-sparse-d-depth-TC' is a threshold circuit with n variables, at most cn wires, and depth at most d.
For each i € N, a TC'-circuit is a family of threshold circuits of depth O(log’n) and size poly(n).

3 Weighted Cliques in Hypergraphs

Recall that in the Exact-Weight-k-Clique problem on d-hypergraphs we are given a d-hypergraph G
and a target value ¢, and the task is to decide whether some size-k subset S C V(G) forms a clique
of total weight > -gw(e) =t. We denote by M = M (w,t) the maximum weight in absolute value,
that is, we have M = max({|t|} U {|w(e)| : e € E(G)}). We write n = |V(G)]|. Since in this section
we will mostly deal with the Exact-Weight-k-Clique on d-hypergraphs problem, we will abbreviate
it to “weighted d-hypergraph k-clique”.

3.1 Preprocessing reductions

We rely on some basic reductions: The first makes the hypergraph a complete d-hypergraph, which
shows that the graph structure is immaterial for this problem; the second makes the hypergraph k-
partite, which will be useful in our constructions; the third reduces from “exact weight clique” to
“zero weight clique”, that is, it sets the target value ¢ to 0 but makes use of negative edge weights;
the fourth uses a non-negative target value but removes negative weights. In the following statement,
we use M’ to denote the maximum weight M (w’,t’) of the output instance.

Fact 3.1. Let d,k € N with 1 < d < k. There are O(n?)-time self-reductions for weighted
d-hypergraph k-cliqgue with the following properties:

1. “Make complete”: maps an instance (G, w, k,t) to (G',w', k,t') where V(G') = V(QG), E(G') =

(V<(§)); and the mazimum weights satisfy M’ < (fd)M.

2. “Make k-partite”: maps an instance (G,w, k,t) to (G',w', k,t) where |V(G')| < k|V(G)|, the
maximum weights satisfy M = M', and G’ is k-partite in the sense that V(G') is partitioned
such that every edge intersects each part in at most one verter.

3. “Make target zero”: maps a k-partite instance (G,w, k,t) to (G,w', k,t") where t' =0 and the
mazimum weights satisfy M' < 2M.

4. “Make weights non-negative”: maps an instance (G,w, k,t) to (G,w', k,t") where w' : E(G) —
N and t' € N holds, and we have M’ < 2(<kd)2M.

Proof. Let (G,w,k,t) be an instance for the problem.
For the first claim, we set w(e) = (k d)M for edges e that are supposed to be absent; such edges

cannot be used by any solution. Hence, we can assume E(G) = (V<(§)) without loss of generality.

For the second claim, we define V(G') = {1,...,k} x V(G). For every pairwise distinct
ai,...,ag € {1,...,k} and every edge {v1,...,vg4} € E(G) of size d’, we add an edge f =
{(a1,v1),...,(ag,ve)} CV(G) to G'. We set the weight w'(f) = w({v1,...,va}). It is clear that
this instance is equivalent to the input instance, and k-partite (the parts consist of vertices with
equal first coordinate).

For the third claim, we slightly modify the weights by setting ¢ = 0 and subtracting ¢ from certain
edge weights. Specifically, for any edge of cardinality d, denoted by f = {(a1,v1),..., (aq,vq)},
we set w'(f) = w({v1,...,vq4}) if {a1,...,aq} # {1,...,d} and w'(f) = w({vy,...,vq}) — ¢ if
{a1,...,aq} ={1,...,d}. Note that any k-clique in G’ contains exactly one edge f that intersects
the first d parts of the k-partition in exactly one vertex each.

For the fourth claim, we first ensure that F(G) = (Vég)) using the first claim, which increases

M by at most a factor (<kd)‘ Let L = max{0, —w(e) : e eiE(G)}, that is, L is the absolute value of
the smallest negative weight that occurs in the input, or 0 if there is none. We set w'(e) = w(e) + L

for all e and ¢ =t + L(F). If ¢/ <0 or ¢/ > max{w(e)} - (F,), the instance is a trivial no-instance.
Otherwise the reduction outputs (G,w’, k,t'). B O

3.2 Weight reduction: From arbitrary to polynomial

We proceed by reducing the weights of a given instance of the weighted d-hypergraph k-clique
problem. By taking the numbers modulo a random prime, we can reduce the maximum weight
from M to n®®) in the following way:

Lemma 3.2. Let d,k € N with 1 < d < k. For some constant f(k,d) € N there is a randomized
f(k,d)-polylog M time self-reduction for the d-hypergraph k-clique problem that, on input an instance
(G,w, k,t) with mazimum weight M, makes at most f(k,d) queries to instances (G,w', k,t") where
w': E(G) = N, t' e N, M’ < f(k,d)-n°®), and the success probability of the reduction is at least
99%.

Proof. If M < nF holds, we do not need to do anything. If M > exp(n*) holds, then in time
O(n¥log M) = polylog(M) we can brute-force the problem. In the remaining case, we sample a
prime p uniformly at random from a range specified later, and set w’(e) = w(e) mod p for all e.
We query the oracle (G,w',k,t') for all ¥ with ¢ = jp + (¢t mod p) and j € {0,..., (fd)}, and
we output yes if and only if at least one oracle query returns yes. To prove the completeness
of this reduction, let S be a k-clique of weight ¢ with respect to w. Then Y, -g(w(e) mod p) =
i+ ((Cecs w(e)) mod p) = jp + (t mod p) = jp + t' holds for some j in the specified range since
(<k d) is the number of terms in the sum. Hence yes-instances map to yes-instances with probability 1.
Conversely, if such a j exists, then the weight of S modulo p is equal to ¢ modulo p.

For the soundness of the reduction, we need to specify the sampling process for p. This
is implemented as follows: let Q = 200n* log(de) and sample positive integers bounded by
O(QIn Q) uniformly at random until we have found a prime (which we can verify, for example,
deterministically in time O(polylog@) = O(polylog M) since M > n). By the prime number
theorem, with probability at least 99.5%, after O(In Q) < O(dklogn) samples we have found a
prime that is a uniform sample from a set of at least) primes.

The weight of each k-clique S in G is at most kM in absolute value, and there are at most n*
distinct sets S, and so n* is also an upper bound on the number of distinct weights that appear.
For the soundness of the reduction, it is sufficient that w(S) is not congruent to ¢t modulo p. As
[t —w(S)| is at most k%M, it has at most log(k?M) prime divisors. Therefore the probability that
for some S it holds that w(S) is congruent to ¢t modulo p is at most n* log(k¢M)/Q. Overall, we
succeed at finding a prime with the desired property with probability (99.5%)% > 99%.

We indeed make at most k% queries to the oracle, and the largest weight in each query is bounded
by (<kd) -p. Since p is bounded by @ and M < exp(n*), this is at most f(k,d)n®®). For the running
time, we need to worry about the bitlength of the involved weights. The input weights use at most
log M bits, and so @ (and thus any p) uses at most O(dklogn + log M) = polylog M bits, and
computing the weights modulo p can be done in time polylog M. O

3.3 Weight reduction: From polynomial to unweighted

Now we show a deterministic reduction that further reduces the weights from n°®) to f (k,d) -logn.
The g-expansion of a number w € N is the unique sequence wg, w1, -+ € {0,...,q — 1} with
W = Y peN weq’. The following lemma uses carries to split the weight constraint along the g-
expansions of the edge weights w and the target ¢; this will be used to reduce the magnitude of the
weights.

Lemma 3.3. Let w: E(G) = N and S C V(G) with |S| =k. Let t € N. Let ¢ € N with ¢ > 2 and
p = [log,t]. We write (wg)¢ and (t¢); for the g-expansion of w and t, respectively. The following
are equivalent:

1. Y .csw(e) =t

2. There exists a unique sequence (cg)gen with ¢g € {0,. .., 2(<kd)} for all £ such that co = 0 and
decswele) + e =ty +q-coyr for all L.
3. There exists a unique sequence (c¢)gen with ¢ € {0, . .. ,2(<kd)} for all € such that co = 0 and
2
Z(CZ_tZ_Q'CZ+1+Zw€(€)) =0. (2)
leN eCS

Proof. The equivalence between the last two claims follows from the fact that the 2-norm is a
norm (or a sum of squares is only 0 when all squares are 0). To see that the first claim implies
the second, note that we can inductively set the carries so as to satisfy the linear equations. Since
these carries are unique non-negative integers, we just need to prove the 2(<k d) upper bound. Note
that ¢; < (<k d> since there are at most (<k d) edges in G[S] and each edge e contributes a weight
of wo(e) < q_ Inductively, we have c/y1 S_(fd) +co/q < 2(<kd) since ¢ > 2.

To see that the second claim implies the first, we observe Srend - Yecswe(e) = X, q (te +
qcey1 —co) =t+ 3 n0 qlep — S dlep =t —cop=t. O

The following algorithm uses to reduce weights; in particular, we use the binomial theorem
(a+b)% = a® + 2ab+b? in (with @ = ¢y — ty — q - cp+1) and then collect terms depending on
which vertices of G the weight terms depend on — the terms not depending on edge weights are
collected into the target integer. As discussed in the introduction, note that this approach was used
before to reduce weights of cliques by Abboud et al. [4] in the more specific setting of node weights
in graphs (rather than hypergraps).

Algorithm A (Weight reduction for the weighted k-clique problem) Given a d-hypergraph G with
edge weights w : E(G) — Z, a number k, a weight target t € Z, a parameter p € N, and access to an
oracle for weighted k-clique in 2d-hypergraphs, the following algorithm finds a k-clique of weight t
inG:

A1l (Make k-partite and non-negative) Apply Fact to make the instance complete and k-partite
and all weights non-negative.

A2 (Set parameters) Let M = max({t} U{w(e) : e € E(G)}) and let ¢ € N be such that
p = [log, M.

A3 (Guess carries) Exhaustively guess ¢, € {1, ..., 2(<ch)} for each ¢ € {1,...,p}; set ¢o = 0. For
each such guess do the following:

a (Compute new weights) For every set f € (‘2(2(2)), set w'(f) € N such that

p

w'(f)=> (2' [f € E@)]-we(f)-(co—te—q-co)+ >, weler) 'wz(e2)) , (3)
(=0 e1,e2€E(G)
eijUea=f
and t’' = — ZIZ’;&(Q —tp—q-cip1)’

b (Call oracle) If the oracle detects a k-clique S in (G',w') of weight #', then halt and output
yes; otherwise continue guessing carries.

A4 If no suitable carries were found, output no.

We prove the correctness and the required properties of this algorithm.

Lemma 3.4. Let d,k € N with 1 < d < k. Algorithm A (with input parameter p € N) is an oracle
reduction from weighted d-hypergraph k-clique to weighted 2d-hypergraph k-clique. The algorithm
runs in time O(pdn2?k®) and makes at most k™ oracle queries. Every query is a hypergraph on

the same set of vertices. If M is the mazximal weight among w and t, then the mazimal weight M’
of all queries satisfies M’ < O(k4dM2/pp),

Proof. Let G be the d-hypergraph with E(G) = (Vg(g)), edge weight function w : E(G) — N, and
target t € N after applying Fact Let G’ be the 2d-hypergraph with F(G’) = (‘Q(Si)).

We first prove the correctness of the reduction. By Lemma the instance (G, k,w,t) has a
k-clique S of total weight ¢ if and only if there exist (c¢), satisfying (2)). Now consider the weight

of S in G’; a simple application of the binomial theorem yields that the left side of equals

> 12 (Z we(e)) (co—te—q-copr) +(ce—te—q- o) + (Z we(e))

eN eCS eCS
2
= —t'+ Z 2 Z we(e) | (co—te—q-cor1) + Z we(e)
£eN eCS eCS
=—t'+ Y. DY |2 [f€E@] wlf) (ce—te—q-co)+ D, weler) - we(ea)
FEE(G']S]) LeN e1,e2€E(G)
e1Uea=f
=t + Z w/(f)7
FEE(G']S])

where the second equality holds, since every pair e, es has a unique union f where its contribution
is accounted for. By Lemma S is a k-clique of weight ¢ in (G, w) if and only if the right side of
the latter equation is equal to 0, which in turn holds if and only if the weight of S with respect
to w' is .

For the running time, note that the preprocessing takes O(n?) time. Exhaustive search for the
carries takes O (k) iterations, and each iteration takes time O(n?!p4?) because of line A3a in which
we need to compute w'(f) for every edge; overall the reduction takes time O(n??k%) and makes at
most k% oracle queries.

For the weights, note that ¢, < 2k holds, and so [t/| < O(k*1¢?p). To get the bound on w'(f),
observe that the term 3, .,y we(e1)we(ez) is bounded by 2942, and the term wy(f)-(co—te—q-cop1)
is bounded by O(¢%k?) in absolute value. The preprocessing step relying on Fact may have
added an additional factor of k2¢; overall, all weights are bounded by O(k?g?p). O

We apply Lemma to reduce the maximum weights from poly(n) to O(logn), which is small
enough to allow for exhaustive enumeration to reduce to the problem without weights.

10

Lemma 3.5. Let d,k € N with 1 < d < k and f(d,k) € N. There is an n**°V_time oracle
reduction from weighted d-hypergraph k-clique with weights in {—nf(k7d), e ,nf(k’d)} to unweighted
k-partite 2d-hypergraph k-clique. If the input has n vertices, every oracle query has n vertices and
the reduction uses at most n°1) queries. Here the o(1) terms are of the form g(k,d)/+/logn.

Proof. Let G be a given k-partite d-hypergraph with edge weights w : E(G) — Z and target
value t € Z. We apply Lemma In particular, setting p = /Iogn, we get k% = n°M) queries and
maximum weight M’ < O(k*M?/Pp) = no),

Each query is now a k-partite instance (G, w’, k,t') with maximum weight M’. Note that we
treat k and d as constants here. A solution S of G’ satisfies >..-gw’(e) = t'. Since G’ is k-partite, S
intersects each part in exactly one vertex, and for each set C' C {1,...,k} with 1 < |C| < d, there
is a unique edge ec C S that intersects exactly the color classes in C', and this edge contributes
w'(ec) to the total weight of S. We want to simulate these weights by exhaustively guessing the
contribution w(ec) of each C' — to do so, we only keep the edges of color type C' that have the
guessed weight.

More precisely, for each C' C {1,...,k} with 1 < |C| < d, we exhaustively guess a weight
ac € [—=M’,M’]. In total, this requires iterating through at most (2M’ + 1)k = n°() candidate
weight vectors a = (ac)ccq,.. k) If the sum - ac is not equal to ¢/, we reject the candidate vector
and move to the next one. Otherwise, for each C' and each edge e intersecting exactly the color
classes prescribed by C, we keep e in the graph if and only if w’(e) = ac. In this way, we obtain
a k-partite 2d-hypergraph G,. For each candidate vector a of weight ¢, we query the (unweighted)
k-clique oracle for 2d-hypergraphs and output yes if and only if at least one query outputs yes.

The claim on the running time follows, since there are only n°®) candidate vectors when k is
regarded as a constant, and preparing each oracle query G, can be done in time n2d+o(1) which is
almost-linear in the description length of GG,. For the correctness, note that G has a solution S if and
only if G’ has a solution S. If G’ has a solution S, then there is a setting of the a¢ corresponding
to the solution such that all edges in G[S] survive in G, and the oracle finds a k-clique. On the
other hand, if S is a k-clique in some G, then the used edges have the desired weight in G’. The
correctness of the reduction follows. O

3.4 Reduction to Orthogonal Vectors

In this section, we reduce from clique in d-hypergraphs via the k-OV problem to 2-OV. Recall that
the k-OV problem is given k sets X1,..., X} C {0,1}” of Boolean vectors and the goal is to find
r1 € X4, ..., xp € X such that ijzl Hle x;; = 0 holds, where the sum and product are the usual
operations over the integers Z.

Lemma 3.6. Let d,k € N with 1 < d < k. There is an O(n®*! polylogn) time many-one reduction
from (unweighted) k-partite d-hypergraph k-clique to k-OV; the number of produced vectors is n and
the dimension of the vectors is n®.
Proof. Let G be a given k-partite d-hypergraph with parts Vi,...,Vi. Let vy,..., v, be vertices
with v; € V; for all i € {1,...,k}. Then {vy,...,v;} forms a k-clique in G if and only if all non-
edges h € E(G) satisfy h € {v1,...,v}. Here E(G) denotes {e € (V<(§)) |Vi:lenV;| <1} \ E(G).
We construct the instance Xi,..., X} of k-OV as follows. For each v € V;, we create a vector
x, € X; CH0, 1}E(G) as follows: If h € E(G) is disjoint from V;, we set z,, = 1. If hNV; = {v},
we set z, , = 1. Otherwise we have hN'V; = {u} # {v} for some u, and we set x,,;, = 0. Clearly the
sets X1,..., X} contain a total of n Boolean vectors, each with |E(G)| < n? dimensions. Moreover,

11

the sets can be easily computed in O(n?*! polylogn) time. It remains to prove the correctness of
the reduction.

To this end, let vy,...,v, with v; € V; for all i be vertices that form a k-clique {v1,...,vg}
in the k-partite d-hypergraph G. We claim that {x,,} is a solution to the k-OV instance, that is,
we claim 37, 7 [1¥., 2y, = 0. To see this, let h € E(G) be arbitrary. Since {vy,...,v;} is a
k-clique in G and h is a non-edge of GG, there exists a part V; that satisfies V; Nh # () and v; & h.
By definition, we have x,, , = 0. Thus the entire sum is indeed zero.

For the reverse direction, let z,,,...,z,, with z,, € X; for all i be vectors that form a solution
to the k-OV instance. This means that for all h € E(G), there exists some i € {1,...,k} such that
Ty, n, = 0 holds. By definition, this implies that h N V; = {u} # {v;} for some u holds. Thus in
particular, h € {v1,...,v;} and so the set {v1,..., vt} does not contain any non-edges of G and
must be a clique.]

The last step of our reduction is reminiscent of the classic SETH-based lower bound for 2-OV [57].

Lemma 3.7. Let k € N. There is an O(n/*/21D) time many-one reduction from k-OV to 2-OV that
maps instances with n vectors in dimension D to instances with O(n!*/21) vectors in dimension D.

Proof. Let X1,..., X, C {0,1}” be the input for k&-OV with n = Zle | X;|. The idea is to split
the instance into two halves and list all candidate solutions in each half. For each candidate
solution S C X; U - U X9 with [SNX;| =1 forall i € {1,...,[k/2]}, we create a vector
vS € X| C {0,1}P by setting v¥ = [[,cqu;. Similarly, for each S’ C Xik/241 U U Xy, with
1SN X;| = 1 for all i € {|k/2] +1,...,k}, we create a vector v° € X} C {0,1}” by setting
vY = [[,eg ui- We obtain an instance X1, X} C {0,1}” of 2-OV.

We claim that Xi,..., X} is a yes-instance of k-OV if and only if X7, X/ is a yes-instance
of 2-OV. Suppose that v1,..., v are orthogonal, that is, Hle(vi)j =0 holds for all j € {1,...,D}.
We set S = {v1,..., 052/} and " = {v|x/2)4+1,---,0}. Clearly vf : vf/ = 0 holds for all j, so
v, 05" € V' are indeed orthogonal. Conversely, if vf . v]S/ = 0 holds for all j, then the k£ vectors in
SU S’ are orthogonal. O

3.5 Tying things together
We now formally prove Theorem

Theorem [1.3| (restated). If OVC,s is false, then for some € > 0 there is for every d a sufficiently
large k = k(d,e) such that there are algorithms that solve

o k-Clique on d-hypergraphs in O(n(lfs)k) time.

o FEzact-Weight-k-Clique on d-hypergraphs with weights in {—M, ..., M} in randomized time at
most O(n1=9) . polylog M).

o Min-Weight-k-Clique on d-hypergraphs with weights in {—M, ..., M} in randomized time at
most O(n(*=2)% . polylog M).

Proof. Let (G, w, k,t) be a given instance of Min-Weight-k-Clique on d-hypergraphs. We summarize
the lemmas of this section as follows:

1. Lemma randomly reduces in O(polylog(M)) time Exact-Weight-k-Clique with weights up
to M to a constant (which depends on k and d) number of instances of Exact-Weight-k-Clique
on G with weights up to n@®*),

12

2. Lemma reduces this in n2¢+°() time to n°) instances of k-Clique on 2d-hypergraphs.

3. Lemma reduces in n24t1t°(1) time one such an instance of k-Clique on 2d-hypergraphs to
one instance of k-OV with n vectors in n?? dimensions.

4. Lemma [3.7 reduces in time n/#/21+2d+0(1) 5ne such an instance of k-OV to one instance of
2-OV with O(nl*/21) vectors in n?¢ dimensions.

Composing these reductions gives a randomized O(nl*/21+2d+o(1) 1 polylog(M)) time oracle
reduction from Exact-Weight-k-Clique on d-hypergraphs with n vertices and largest weight M to
2-OV on nl*/21 vectors of dimension n2¢ using n°®) oracle calls.

To reduce from Min-Weight clique to Exact-Weight clique, we use [46, Theorem 1], which allows
us to perform a binary search for the minimum-weight clique by making few queries to exact-weight
clique. As the domain E(G) of our weight function is of size at most n% and the maximum weight
is upper bounded by M this reduction requires O(n%log M) oracle calls. This yields a randomized
O(nlk/21+2d+0(1) polylog(M)) time oracle reduction from Min-Weight-k-Clique on d-hypergraphs
with n vertices and largest weight M to 2-OV on nl*/21 vectors of dimension n2¢ using n¢+°() log M
oracle calls.

Using only steps 3 and 4, we obtain a O(n[k/ 2H'2d+0(1)) time many-one reduction from k-Clique
on d-hypergraphs with n vertices to 2-OV on nl%/21 vectors of dimension n??.

Now we compose these reductions with the assumed N27¢ time algorithm for 2-OV on N vectors
in dimension N°. This yields algorithms running in time

O ((n(k/2}+2d+o(1) + plk/2] (2—5’)+d+o(1)) polylog(M)) _

For sufficiently large k = k(d, '), this is O(n*(1=) polylog(M)) for some & > 0. O
We obtain the following corollary to Theorem

Corollary (restated). If the OV Conjecture is false, then there is some € > 0 such that, for
all d € N, there is an O*((2 — &)™) time algorithm for Maz-d-SAT.

The corollary follows from Theorem with a reduction from Max-d-SAT to k-Clique on
d-hypergraphs that was already sketched in e.g. [57]. We formally state and prove this reduction
next. Note that for constant k sufficiently larger than d, combining this reduction with an
O(n(lfs)kpoly log M) time algorithm for the Min-Weight-k-Clique problem in d-hypergraphs yields
an 0*(2(1=9)") time algorithm for Max-d-SAT. Combined with Theorem m this proves Corollary

Lemma 3.8. Let d,k € N with 1 < d < k. There is an O*(29"/*) time reduction from Maz-d-SAT
to Min- Weight-k-Clique for d-hypergraphs that maps d-CNF formulas with n variables and m clauses
to d-uniform hypergraphs with at most k2% vertices and mazimum weight M < 2m.

Proof. Given an instance of Max-d-SAT consisting of a d-CNF formula ¢ on variable set V' of size
n and m clauses, and an integer ¢ indicating the required number of satisfied clauses, partition V'
into sets Vi,...,V where |Vi| < n/k.

Now build a d-hypergraph H with vertices Ui-“:l P; where P; contains a vertex p’, for every vector
x € {0,1}Vi. For every set {i1,...,is} € (@l), and tuple (z1,...,2¢) € P, x P, ... x P, create an
edge f = {z1,...,x¢}. Define the weight of f to be —1 times the number of clauses that

1. are contained in U§:1 Vi

13

2. contain a variable in V;; for every j =1,...,¢, and
3. are satisfied by the partial assignment obtained by setting the variables in V;, according to z;.

To ensure that a small-weight clique intersects with every P; in at most one vertex, we also add
edges (u,v) for every u # v with u,v € P; with weight 2m. The target instance is H, and the goal
is to decide whether the minimum weight of any k-clique is at most —t. As the number of edges
of H is at most (k:2”/)4 and for every edge we can in polynomial time compute its weight, the
running time of this reduction can be bounded by O*(2%%/*).

To see that this is a correct reduction, let X C V(H) be a k-clique of H of weight at most —¢.
We see that X contains at most one vertex from every P;, and as |X| = k we have that X intersects
in exactly one vertex with every P;. By definition of the sets P;, the set X thus corresponds to an
assignment x of the variables of ¢. We claim that the weight of X is —1 times the number of clauses
satisfied by = and therefore ¢ has an assignment satisfying at least ¢ clauses. To see the claim,
let C be a clause of ¢ and {i : C contains variables from V;} = {i1,...,i/} be the set of variable
groups intersecting C. Let x;,,...,x;, be the corresponding partial assignments that = induces to
Viis--.,Vi,. We see that C contributes —1 to the weight of the hyperedge (z1,...,z¢) and 0 to all
other edges.

For the reverse direction, suppose x is an assignment satisfying at least ¢ clauses of ¢ and let x;
be the projecting of onto V;. Then by the above claim the weight of X := {pclcl, e ,p’;;k} is—t. O

4 Reducing Sparse Satisfiability Problems to CNF-SAT

A dream theorem would be to reduce the sparse circuit satisfiability problem over the De Morgan
basis to the CNF-SAT problem in such a way that a violation of SETH implies that faster algorithm
for sparse circuit satisfiability exist. We demonstrate how to do this for sparse formulas as a
warm-up, reproving a result of [30], and then prove that it holds for sparse TCO-circuits as well.
We also prove that, if CNF-SAT with unbounded clause width can be decided in time O*((2 — ¢)")
for some ¢ > 0, then this is also true for sparse TC!-circuits. This significantly extends previous
equivalences of SETH with the satisfiability problem of sparse formulas [30], sparse VSP-circuits [24],
and sparse ACY-circuits [35].

4.1 Sparse Formulas

Formulas are circuits that become a tree when the input gates are removed. We consider formulas
over the De Morgan basis {NEG, AND, OR}; in particular, we assume the corresponding trees to be
binary, that is, the fan-in of every gate is at most two. We use the following simple decomposition
lemma for binary trees:

Lemma 4.1 (Impagliazzo, Meka, and Zuckerman [35, Claim 4.4]). Let T be a binary tree with m
nodes and let £ € N with £ < m. There exists a set A C V(T) with |A| < 6m/¢ such that every
connected component C CV(T) of T — A has at most { nodes and at most three vertices of A are
adjacent to vertices of C. Moreover, such a set A can be computed in polynomial time.

Using this lemma, we can observe that the satisfiability of sparse Boolean formulas reduces to
the satisfiability of k-CNF formulas with only a small overhead in the running time.

Algorithm B (Transform sparse formula to k-CNF) Given a Boolean formula F and an positive
integer k € N, this algorithm computes an equivalent k-CNF formula F’.

14

B1 (Compute decomposition) Let A C V(F') be the set guaranteed by Lemma where ¢ = k/4
and T'= F — I(F) is the tree obtained from F' by removing its input gates.
B2 (Create variables) Let x1, ..., x, be the input variables of F'; for each a € A, create a variable y,.

Also create a variable y, where o € V(F') is the output gate of F.
B3 (Compute k-CNFs for small subcircuits) For each v € AU {o}, do the following:

a Let F, 4 be the subcircuit of F' induced by the set Rc (A, v) and interpret the gates a € A
as input variables y,.

b Since F), 4 depends on at most 2¢ variables, we can compute a k-CNF formula F}, with at
most 2¢ + 1 < k variables that expresses the constraint “y, = F, a(z,y)".

B4 (Output) Let F' = y, A N\yea F,, and output F’.

We prove the correctness and properties of this algorithm in the following lemma.

Lemma 4.2. Let c,e > 0. There exists a k € N such that algorithm B is a polynomial-time
many-one reduction for the satisfiability problem that maps formulas with n variables and at most
en gates to a k-CNF formula with at most (1 + ¢€) - n variables.

Proof. We set k = c¢/(24¢). Let F be the input formula with n variables zj,...,z, and at
most m < cn gates. We claim that F’ has a satisfying assignment if and only if F' does, and F’ is a
k-CNF formula with at most (1 + €)n variables.

Let T be the tree obtained when removing the input gates, and let A C V(T') be the vertex set
guaranteed by Lemma for £ = k/4. Since m < cn, we have |A| < 24cen/k < en, so indeed F’
has at most (1 + &)n variables. By Lemma F, A contains at most ¢ non-input gates and, since
the fan-in is at most two, F;, 4 contains most 2¢ gates overall. So the constraint “y, = F;, a(x,y)”
indeed depends on at most 2¢ + 1 variables and can be expressed trivially by a (2 + 1)-CNF formula.
It is clear that F” can be computed in polynomial time. Moreover, F'(z) = 1 holds if and only if
there is a setting for y such that F'(z,y) = 1 holds, so F' and F’ are equisatisfiable. We obtain the
claimed reduction. O

The lemma has the following consequence:

Theorem 4.3. If SETH is false, then there is an ¢ > 0 such that, for all c, the satisfiability of
Boolean formulas of size at most cn can be solved in time O((2 —€)").

In other words, SETH is implied by Sparse-Formula-SETH. This reproves a result of [30].

Proof. Suppose that SETH is false. Then there is some ¢ > 0 such that k&-CNF SAT can be solved
in time O*((2 — §)") for all k € N. Let ¢ > 0. In order to solve Formula-SAT for cn-size formulas,
we apply Lemma to reduce to a k-CNF formula with n’ = (1 + a)n variables. We can solve this
instance using the assumed algorithm in time (2 — 6)" < (2 — §)(1F®)" < (2 — €)™ for some suitable
g,a>0.]

After this warm-up, we next consider TC-circuits.

15

4.2 Sparse TC’-circuits

The goal of this section is to prove the following:

Lemma 4.4. There is a polynomial-time many-one reduction from TC-SAT to CNF-SAT that,
given ¢ € (0,1) and a depth-d threshold circuit with at most cn wires, with ¢ > 1, produces a k-CNF

formula ¢ on at most (1 + €)n variables and with k < (2000(c/e) log(?c/e))d + 1.

In the next subsection we will improve the dependence on d by applying depth reduction first.
Our proof of Lemma [£.4] relies on a linear-size adder circuit as provided by the following lemma.

Lemma 4.5 (Adder circuit). Let b, € N. There is a circuit Cogq : {0,1} — {0, 1307108 5per
{NEG, AND, OR} with at most 40b¢ gates and mazximum fan-in 2 such that Cyqq computes the
binary representation of the sum of £ given b-bit integers.

Proof. The proof of this lemma is standard. It is well known that there is a circuit Cr4 (the full
adder) that adds b/-bit numbers using 20" gates and constant fan-in. Describing the computation
of C,qq using parentheses, the circuit C,qq computes the sum Zle b; in a binary-tree-like way as

(((b1 + b2) + (b3 + b)) + ((b5 + bg) + (b7 + bs))) + ...

Using Cr4 for every addition, the number of gates needed is at most

[g {] o0
> 20(b+i)¢/2" < 20bs Y /2" = 40bC . O
=1 =1

We will use the following variant of a threshold gate with binary input.

Lemma 4.6 (BINTH circuit). Let r,6 € N. There is a circuit BINTHy : {0,1}" — {0,1} over
{NEG, AND, OR} with at most 2r gates and mazximum fan-in 2 such that BINTHy(xo,...,z,_1)
computes whether ;-:01 z;2" is at least 6.

Proof. The circuit BINTHy is constructed by setting ¢ = [lg#] and converting the following formula
into a circuit:

r—1
BINTHy(x0, . .., 2y_1) = (\/ x) vV (:nt_l ABINTHy o1 (0, - . ,xt_1)> : 0

i=t
We are ready to prove Lemma [£.4]

Proof of Lemma[{.4 Without loss of generality, threshold circuits only have input, NEG, and THy
gates, since THy can directly simulate AND, OR, and MAJ gates. The algorithm to transform
threshold circuits into k-CNF formulas is implemented in Algorithm C. Intuitively, it replaces
threshold gates of large fan-in by a circuit of bounded fan-in in such a way that the circuit can be
be simulated by a k-CNF formula without introducing too many new variables.

Algorithm C (Reduce sparse threshold circuit to k-CNF) Given a threshold circuit C' of depth d
and a positive integer [€ N, this algorithm computes an equivalent k-CNF formula F'.

C1 (Initialize gates to be replaced with variables) Let A = {o} where o € V(C) is the output gate
of C.

C2 (Replace large threshold gates by the circuit in Figure @ For each v € V(C) of fanin d(v) > f:

16

a Let 6 € N such that v is a THy-gate.

b Partition the children N (v) of v into blocks By, . . ., By of size at most 8 with £ < [d(v)/f]
and remove all wires leading into v.

¢ (Construct adder circuit for each block) For each i € {1,... ¢}, create a circuit Cyqq(B;)
that uses the gates of B; as input gates and has log 8 + 1 output gates b; such that b;
represents the number of 1s in B; in binary. Here, C,4q is the circuit from Lemma

d (Simulate threshold gate by circuit of fan-in two) Add a circuit BINTHy(C\qq(b1, - - -, be))
with inputs by, ...,bs and output gate v, that is, the inputs by, ..., by are fed into Cyyq
(from Lemma , whose outputs are fed into BINTHy (from Lemma . This con-
catenated circuit takes the binary representation of ¢ integers by, ..., by € {0,1,... ,B}Z
on b = log 5+1 bits each and it outputs true if and only if the sum of the given integers is
at least 6. The circuit BINTHg(Cyqq(b1, - . ., b)) has at most 4066+ 2(b+ [log £]) < 44b¢
gates and fan-in at most 2. We add all of its gates, including the b;’s, to A.

C3 (Compute k-CNFs) For all v € A, add a new variable y, and do the following:
a Let C, 4 be the subcircuit of C' induced by the set Rc(A,v) (as defined in the preliminaries)
and interpret the gates a € A as input variables y,.

b We will show that C,, 4 depends on at most 3¢ variables, so we can compute a k-CNF formula
F, with at most k = 8% + 1 variables that expresses the constraint “y, = vA(z,y)”,
where 1, ..., x, are the input variables of C.

C4 (Output) Let F' =y, A \yea Fu, and output F'.

TH,
BINTH,
Cadd
b by bs by
Cadd Cadd Cadd llllllllllllllllllll Cadd
By By B; By
V1...U8 Ug41..-V28 V2841 .- - V3B e

Figure 2: Overview of replacement of THy gate.

Correctness of rewriting To prove correctness, let us first observe that the transformation in
C2 does not change the functionality of C since we just explicitly simulate threshold gates with large
fan-in by constructing a small Boolean circuit over the De Morgan basis in a straightforward way.

17

We do this transformation in a block-wise fashion in order to save the number of additional variables
we add in step C3. So let C' be the circuit after its transformation in C2 and consider step C3. Let x
be a setting for the n input gates I(C'). We claim that C'(x) = 1 holds if and only if there is a setting
for the y-variables such that F(x,y) = 1. Indeed, if C(z) = 1, we set y such that y, = Cy(x) holds
for all a € A. This setting for y then satisfies the constraint “y, = C, a(x,y)” and thus F,(z,y) = 1.
Moreover, y, = C(z) = 1 holds as well, and so the formula F' constructed in C4 is satisfied by (z,y).
For the reverse direction, let (z,y) be such that F(z,y) = 1. We claim that C'(z) = 1 holds as
well. Indeed, by construction of F', we know that y, = 1 and C, a(x) = y, holds for all v € A.
We can see by induction on the depth of v (starting at the bottom) that Cy(x) = C, a(x,y) holds.
In the base case, the only input gates of C, 4 are the original z-input gates from I(C'), and thus
Y» = Cyp a(x,y) = Cy(x) holds. In the inductive case, C, 4 may depend on variables y,. However,
for each such variable, we know by the induction hypothesis that y, = C, a(z,y) = Cq(z) holds,
and thus we have Cy(x) = C, a(z,y) by the definition of C,,. In particular C'(z) = y, = 1 holds and
so x satisfies C. This establishes the correctness of the reduction, except for proving that width
k = 3% +1 is sufficient (in step C3b), which we will show next.

Bounding the width In C3a, note that by the definition of C, 4 and Rc (A, v) (see Section ,
the value of gate v on input z is determined by the set of values of the gates u € AN Ro(A,v).
Therefore, in C3b we can ensure the value y, equals the value of gate v on input z by adding
clauses on y, and the variables corresponding to the gates in A N Ro(A,v). We need to prove
that the set A N Ro(A,v) has size less than k = 3% 4 1 so that this can be done in k-CNF. For
most gates v added to A this is clear because there are only two gates feeding into v after the
replacement step C2d and both of these gates are in A as well. The only exceptions are the
b1, ...,bsi-gates. Note that any b;-gate v is determined by the B;-gates below it, so we can bound
AN Ro(A,v)| £ Xuep, [AN Ro(A,u)|. Any gate u € B; already existed in the original circuit. If
u has degree at least 8 in the original circuit, then we ran step C2 on u and thus u belongs to A.
Otherwise, u has less than £ children, which already existed in the original circuit, and on which we
recurse. It follows that if gate u has depth d,, in the original circuit, then it can be reached from
less than 3% nodes in A without going through any other node in A, i.e., |[AN Ro(A,u)| < B%.
Since u is a descendant of v, we have d,, < d. In total, we obtain |A N Rc(A,v)| < |B;| - g4~ < g
It follows that the constraints in step C3b indeed consider at most k = ¢ 4 1 variables and can
thus be expressed in k-CNF.

Bounding the number of variables It remains to set § in such a way that |A| is at most en,
which implies that F' has at most (1 4 €)n variables. Recall that the loop at C2 iterates over all
gates v with fan-in d(v) > 8. For any such gate v, we add at most 50b/ gates to A (see step
C2d), where b =1logf+ 1 and ¢ <14 d.(v)/B < 2d(v)/f since d(v) > (. Hence, the overall the
number of gates ever added to A is at most

Z 100dg(v) - logﬁ}i—}—l <100 Cnlogﬁi—i_l.
veV(Q) p p
de(v)=p

Thus we can set 8 = (c,€) € N as a function of ¢ and € such that the size of A is at most en. One
can check that 5 < 2000(c/e)log(2¢/e) suffices for € < 1 < ¢, where all logs are base 2. Thus, we
get the claimed upper bound on k. This concludes the proof of the lemma. O

Let us remark that in Lemma [£.4] we can also handle several other gates, such as MOD,,, gates,
by replacing the BINTHjy circuit in the proof with a circuit that checks whether a given integer is a

18

multiple of a given m. In fact, we can handle any symmetric gate f(z1,...,zq) = g(> %, z;) where
g(s) can be expressed as a d°()-size DeMorgan circuit when given s € {0,...,d} in binary.
Using Lemma 4.4 with € such that (1 + €)s. < 1 we obtain the following.

Theorem (1.5 (restated). If SETH fails, then there is an € > 0 such that, for all constants ¢ and d,
the satisfiability of depth-d threshold circuits with cn wires can be determined in time O((2 —e)™).

4.3 Improving the dependence in depth to sub-exponential

In this section we are going to improve the dependence of k on ¢, e and d in Lemma [4.4] As this
dependence is exponential in d, it is natural to employ existing techniques for depth reduction of
circuits, such as the following result due to Valiant [55]. We use a for us more convenient slight
variant as stated in [39, Lemma 1.4] (see also [56] Section 4.2]):

Lemma 4.7. In any directed graph with m edges and depth 2° (where § is integral), it is possible
to remove in polynomial time a set R of rm/§ edges so that the depth of the resulting graph does
not exceed 2°77.

Lemma can be directly used to improve the dependence of k in Lemma [4.4}

Lemma 4.8. There is an algorithm that, given € > 0 and a depth-d threshold circuit with at
most cn wires, produces at most 2/2 k-CNF formulas ¢1,...,0, on (1 + &/2)n variables such
that the circuit C' is satisfiable if and only if p; is satisfiable for some i < z, and we have k <

(4000(c/¢)]g(4c/€))(2d)1—5/(2c) 1

Proof. Let C = (G = (V,E),\) be the given circuit. Apply Lemma to G with 6 = [lgd]
and r = &d/(2c). We obtain a set R of size at most en/2 such that (V, E'\ R) has depth at most
20(1=¢/(2¢) < (2d)1~¢/(29), For every assignment a € {0, 1} we create a circuit where we require that
Cy(v) = a, for every v € R, remove the outgoing wires and update their incident gate accordingly
(i.e. if a, = 1 and the incident gate is a THy it becomes a THyp_; gate). The obtained circuit has
depth at most (Zd)l_g/ (2¢) and applying Lemma gives the claimed result.]

The improved dependence of k in Lemma [£.8] allows for the following consequence, yielding an
exponential speedup for sparse threshold circuits of any depth (log n)HO(l).

Theorem [1.6| (restated). If CNF-SAT can be solved in O*(20=<)") time for some & > 0, then
there is an € > 0 such that for any ¢ > 0 there is a § > 0 such that the satisfiability of threshold
circuits with depth (logn)™? and at most cn wires can be determined in time O(2(1=5)).

Proof. Apply Lemma with £/2 to obtain 2°™/2 k-CNF-formulas with k = 20((lgn) 1+ =e/(2e)
on (1 4 £/2) variables. For sufficiently small § = d(g,¢) > 0 we have k = 200987 = o(n/logn)
and thus the number of clauses m is at most (2n)F = n°(®/1°8n) = 20(") Therefore the assumed
algorithm for CNF-SAT determines the satisfiability of the produced CNF formula in time 25"/2 .
mOW) . 2(1=e)(1+e/2)n \which is O(20-¢)") for &/ < £2/2. O

Open Question. It is known that Lemmacannot be significantly improved (see [54]). However,
this does not stop us from using the power of branching to get improvements. Specifically, when we
try an assignments of the truth-value on edges in R in Lemma [{.4] all gates that are not connected
to inputs are constant so these and their wires can already be computed and removed from the
circuit. A natural question is whether this can be exploited more: Given a DAG G = (V, E) of
depth 2° on m edges and a real number 0 < o < 0. For a set R of edges, denote [(R) as the length
of the longest path in (V, E'\ R) starting at a vertex v which is a source in G. Give an upper bound
on min{l(R) : |R| < em} better than 2(17)9 (which is implied by Lemma .

19

References

1]

[10]

[11]

[12]

[13]

Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Kunnemann. Fine-grained
complexity of analyzing compressed data: Quantifying improvements over decompress-and-
solve. In FOCS, to appear, 2017.

Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for
LCS and other sequence similarity measures. In Proc. of the 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 59-78, 2015.

Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences
between graph centrality problems, APSP and diameter. In Piotr Indyk, editor, Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 1681-1697. STAM, 2015.

Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges. In Algorithms
- BESA 2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014.
Proceedings, pages 1-12, 2014.

Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed pcp theorems for hardness
of approximation in p. In FOCS, to appear, 2017.

Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proc. of the 55th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 434-443, 2014.

Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and basing
hardness on an extremely popular conjecture. In Proc. of the 47th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 41-50, 2015.

Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In Proc. of the 41st International Colloguium on Automata, Languages,
and Programming (ICALP), pages 39-51, 2014.

Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for maximum
weight rectangles. CoRR, abs/1602.05837, 2016.

Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proc. of the 47th Annual ACM SIGACT Symposium on Theory
of Computing (STOC), pages 51-58, 2015.

Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In
Proc. of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
457-466, 2016.

Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-grained complexity of empirical
risk minimization: Kernel methods and neural networks. In NIPS, to appear, 2017.

Arturs Backurs and Christos Tzamos. Improving Viterbi is hard: Better runtimes imply faster
clique algorithms. CoRR, abs/1607.04229, 2016.

20

[14]

[15]

[27]

Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-case
fine-grained hardness. In Proc. of the 49th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), to appear, 2017.

Christopher Beck and Russell Impagliazzo. Strong ETH holds for regular resolution. In Proc. of
the 45th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 487-494,
2013.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfia-
bility, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquadratic
algorithms unless SETH fails. In Proc. of the 55th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 661-670, 2014.

Karl Bringmann, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Tree edit distance
cannot be computed in strongly subcubic time (unless APSP can). CoRR, abs/1703.08940,
2017.

Karl Bringmann, Allan Grgnlund, and Kasper Green Larsen. A dichotomy for regular expression
membership testing. CoRR, abs/1611.00918, 2016.

Karl Bringmann and Marvin Kunnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proc. of the 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 79-97, 2015.

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause width
and clause density for SAT. In Proc. of 21st Conference on Computational Complexity (CCC),
pages 252-260, 2006.

Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 1246-1255, 2016.

Ruiwen Chen and Rahul Santhanam. Improved algorithms for sparse MAX-SAT and MAX-
k-CSP. In Theory and Applications of Satisfiability Testing - SAT 2015 - 18th International
Conference, Austin, TX, USA, September 24-27, 2015, Proceedings, pages 33—45, 2015.

Marek Cygan, Holger Dell, Daniel Lokshtanov, Daniel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlstrom. On problems as hard as CNF-SAT.
ACM Trans. Algorithms, 12(3):41:1-41:24, 2016.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity checking via bases of
perfect matchings. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium
on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
301-310. ACM, 2013.

Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. In ICALP, pages 22:1-22:15, 2017.

21

28]

[39]

[40]

[41]

[42]

Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 150-159. IEEE Computer Society, 2011.

Sgren Dahlgaard. On the hardness of partially dynamic graph problems and connections to
diameter. arXiv preprint arXiv:1602.06705, 2016.

Evgeny Dantsin and Alexander Wolpert. Exponential complexity of satisfiability testing for
linear-size boolean formulas. In CIAC, volume 7878 of LNCS, pages 110-121, 2013.

Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and
dominating set. Theoretical Computer Science, 326(1):57-67, 2004.

Anka Gajentaan and Mark H. Overmars. On a class of O(n?) problems in computational
geometry. Comput. Geom., 5:165—185, 1995.

Frangois Le Gall. Faster algorithms for rectangular matrix multiplication. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, October 20-23, 2012, pages 514-523. IEEE Computer Society, 2012.

Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness for
first-order properties on sparse structures with algorithmic applications. In Proc. of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2162-2181, 2017.

Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC?. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 961-972, 2012.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sei., 62(2):367-375, 2001.

Russell Impagliazzo, Ramamohan Paturi, and Stefan Schneider. A satisfiability algorithm
for sparse depth two threshold circuits. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 479-488, 2013.

Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In Proc. of the /2nd
International Colloguium on Automata, Languages, and Programming (ICALP), pages 749-760,
2015.

Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer Publishing
Company, Incorporated, 2012.

Daniel Kane and Ryan Williams. The orthogonal vectors conjecture for branching programs
and formulas. arXiv preprint arXiv:1709.05294, 2017.

Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjecture.
In Proc. of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1272-1287, 2016.

Robert Krauthgamer and Ohad Trabelsi. Conditional lower bounds for all-pairs max-flow.
arXiv preprint arXiv:1702.05805, 2017.

22

[43]

[44]

[45]

[46]

Marvin Kiinnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity
of one-dimensional dynamic programming. arXiv preprint arXiv:1703.00941, 2017.

Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. Known algorithms on graphs on bounded
treewidth are probably optimal. In Dana Randall, editor, Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California,
USA, January 23-25, 2011, pages 777-789. SIAM, 2011.

Daniel Moeller, Ramamohan Paturi, and Stefan Schneider. Subquadratic algorithms for succinct
stable matching. In International Computer Science Symposium in Russia, pages 294-308.
Springer, 2016.

Jesper Nederlof, Erik Jan van Leeuwen, and Ruben van der Zwaan. Reducing a target interval
to a few exact queries. In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors,
Mathematical Foundations of Computer Science 2012 - 37th International Symposium, MFCS
2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of Lecture Notes in
Computer Science, pages 718-727. Springer, 2012.

Jaroslav Nesettil and Svatopluk Poljak. On the complexity of the subgraph problem. Commen-
tationes Math. Universitatis Carolinae, 26(2):415-419, 1985.

Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In Moses
Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1065-1075. STAM,
2010.

Mihai Patragcu. Towards polynomial lower bounds for dynamic problems. In Proc. of the 42nd
Annual ACM Symposium on Theory Of Computing (STOC), pages 603-610, 2010.

Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proc. of the 45th Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 515-524, 2013.

Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In Proc. of the 12th ESA,
pages 580-591, 2004.

Barna Saha. Language edit distance and maximum likelihood parsing of stochastic grammars:
Faster algorithms and connection to fundamental graph problems. In Foundations of Computer
Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 118-135. IEEE, 2015.

Rahul Santhanam and Srikanth Srinivasan. On the limits of sparsification. In Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK,
July 9-13, 2012, Proceedings, Part I, pages 774-785, 2012.

Georg Schnitger. A family of graphs with expensive depth-reduction. Theoretical Computer
Science, 18(1):89 — 93, 1982.

Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical
Foundations of Computer Science 1977, 6th Symposium, Tatranska Lomnica, Czechoslovakia,
September 5-9, 1977, Proceedings, pages 162-176, 1977.

Emanuele Viola. On the power of small-depth computation. Foundations and Trends in
Theoretical Computer Science, 5(1):1-72, 2009.

23

[57]

[58]

[59]

Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2-3):357-365, 2005.

Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218-1244, 2013.

Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 664673,
2014.

Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1-2:32, 2014.

Virginia Vassilevska Williams. Hardness of easy problems: basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In LIPIcs-Leibniz
International Proceedings in Informatics, volume 43, 2015.

Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted
subgraphs. In Proc. of the 41st Annual ACM Symposium on Theory Of Computing (STOC),
pages 455-464, 2009.

Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix
and triangle problems. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 645-654. IEEE Computer
Society, 2010.

24

A Schematic Overview of our Results

Sparse
TCC-SAT in

Sparse
TC!-SAT in
0*((2—-¢)")

0*((2-¢)")

Thm [1.6 Thm L5l
CNF-SAT in :
O*((2 . E)n) SETH fails

OV in O(n?7¢)
for d = w(logn)

OVC,,; fails

Thm I3

Exact-Weight-k-Clique
in hypergraphs
in O(n(1=9)k)

Weighted k-Clique
conjecture fails

Max-k-SAT
in O*((2—¢)")

Figure 3: An overview of the relevant implications. New implications presented in this paper are
displayed with bold arcs and labeled with the appropriate theorem statement.

25

	Introduction
	Our Results
	Previous Work on Evidence for the Conjectures

	Preliminaries
	Weighted Cliques in Hypergraphs
	Preprocessing reductions
	Weight reduction: From arbitrary to polynomial
	Weight reduction: From polynomial to unweighted
	Reduction to Orthogonal Vectors
	Tying things together

	Reducing Sparse Satisfiability Problems to CNF-SAT
	Sparse Formulas
	Sparse TC0-circuits
	Improving the dependence in depth to sub-exponential

	Schematic Overview of our Results

