Abstract
Deep learning models have proven to be successful in a wide
range of machine learning tasks. Yet, they are often highly sensitive to
perturbations on the input data which can lead to incorrect decisions
with high confidence, hampering their deployment for practical
use-cases. Thus, finding architectures that are (more) robust against
perturbations has received much attention in recent years. Just like the
search for well-performing architectures in terms of clean accuracy,
this usually involves a tedious trial-and-error process with one
additional challenge: the evaluation of a network's robustness is
significantly more expensive than its evaluation for clean accuracy.
Thus, the aim of this paper is to facilitate better streamlined research
on architectural design choices with respect to their impact on
robustness as well as, for example, the evaluation of surrogate measures
for robustness. We therefore borrow one of the most commonly considered
search spaces for neural architecture search for image classification,
NAS-Bench-201, which contains a manageable size of 6466 non-isomorphic
network designs. We evaluate all these networks on a range of common
adversarial attacks and corruption types and introduce a database on
neural architecture design and robustness evaluations. We further
present three exemplary use cases of this dataset, in which we (i)
benchmark robustness measurements based on Jacobian and Hessian matrices
for their robustness predictability, (ii) perform neural architecture
search on robust accuracies, and (iii) provide an initial analysis of
how architectural design choices affect robustness. We find that
carefully crafting the topology of a network can have substantial impact
on its robustness, where networks with the same parameter count range in
mean adversarial robust accuracy from 20%-41%.