Current Year

[1]
A. Abboud, K. Censor-Hillel, S. Khoury, and C. Lenzen, “Fooling Views: A New Lower Bound Technique for Distributed Computations under Congestion,” Distributed Computing, 2020.
Export
BibTeX
@article{Abboud2020, TITLE = {Fooling Views: A New Lower Bound Technique for Distributed Computations under Congestion}, AUTHOR = {Abboud, Amir and Censor-Hillel, Keren and Khoury, Seri and Lenzen, Christoph}, LANGUAGE = {eng}, ISSN = {0178-2770}, DOI = {10.1007/s00446-020-00373-4}, PUBLISHER = {Springer}, ADDRESS = {New York, NY}, YEAR = {2020}, JOURNAL = {Distributed Computing}, }
Endnote
%0 Journal Article %A Abboud, Amir %A Censor-Hillel, Keren %A Khoury, Seri %A Lenzen, Christoph %+ External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Fooling Views: A New Lower Bound Technique for Distributed Computations under Congestion : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F28E-9 %R 10.1007/s00446-020-00373-4 %7 2020 %D 2020 %J Distributed Computing %I Springer %C New York, NY %@ false
[2]
G. Amanatidis and P. Kleer, “Rapid Mixing of the Switch Markov Chain for Strongly Stable Degree Sequences,” Random Structures and Algorithms, vol. 57, no. 3, 2020.
Export
BibTeX
@article{Amanatidis2020, TITLE = {Rapid mixing of the switch {M}arkov chain for strongly stable degree sequences}, AUTHOR = {Amanatidis, Georgios and Kleer, Pieter}, LANGUAGE = {eng}, ISSN = {1042-9832}, DOI = {10.1002/rsa.20949}, PUBLISHER = {Wiley}, ADDRESS = {New York, N.Y.}, YEAR = {2020}, DATE = {2020}, JOURNAL = {Random Structures and Algorithms}, VOLUME = {57}, NUMBER = {3}, PAGES = {637--657}, }
Endnote
%0 Journal Article %A Amanatidis, Georgios %A Kleer, Pieter %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Rapid Mixing of the Switch Markov Chain for Strongly Stable Degree Sequences : %G eng %U http://hdl.handle.net/21.11116/0000-0006-DC7A-A %R 10.1002/rsa.20949 %7 2020 %D 2020 %J Random Structures and Algorithms %V 57 %N 3 %& 637 %P 637 - 657 %I Wiley %C New York, N.Y. %@ false
[3]
A. Antoniadis, N. Garg, G. Kumar, and N. Kumar, “Parallel Machine Scheduling to Minimize Energy Consumption,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{Antoniadis_SODA20, TITLE = {Parallel Machine Scheduling to Minimize Energy Consumption}, AUTHOR = {Antoniadis, Antonios and Garg, Naveen and Kumar, Gunjan and Kumar, Nikhil}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.5555/3381089.3381257}, PUBLISHER = {SIAM}, YEAR = {2020}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {2758--2769}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Antoniadis, Antonios %A Garg, Naveen %A Kumar, Gunjan %A Kumar, Nikhil %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations External Organizations %T Parallel Machine Scheduling to Minimize Energy Consumption : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F26A-2 %R 10.5555/3381089.3381257 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 2758 - 2769 %I SIAM %@ 978-1-61197-599-4
[4]
S. Arunachalam, S. Chakraborty, M. Koucký, N. Saurabh, and R. de Wolf, “Improved Bounds on Fourier Entropy and Min-entropy,” in 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020), Montpellier, France, 2020.
Export
BibTeX
@inproceedings{Arunachalam_STACS2020, TITLE = {Improved Bounds on {Fourier} Entropy and Min-entropy}, AUTHOR = {Arunachalam, Srinivasan and Chakraborty, Sourav and Kouck{\'y}, Michal and Saurabh, Nitin and de Wolf, Ronald}, LANGUAGE = {eng}, ISSN = {1868-8969}, ISBN = {978-3-95977-140-5}, URL = {urn:nbn:de:0030-drops-119062}, DOI = {10.4230/LIPIcs.STACS.2020.45}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, BOOKTITLE = {37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)}, EDITOR = {Paul, Christophe and Bl{\"a}ser, Markus}, PAGES = {1--19}, EID = {45}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {154}, ADDRESS = {Montpellier, France}, }
Endnote
%0 Conference Proceedings %A Arunachalam, Srinivasan %A Chakraborty, Sourav %A Koucký, Michal %A Saurabh, Nitin %A de Wolf, Ronald %+ External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Improved Bounds on Fourier Entropy and Min-entropy : %G eng %U http://hdl.handle.net/21.11116/0000-0006-97AB-F %R 10.4230/LIPIcs.STACS.2020.45 %U urn:nbn:de:0030-drops-119062 %D 2020 %B 37th International Symposium on Theoretical Aspects of Computer Science %Z date of event: 2020-03-10 - 2020-03-13 %C Montpellier, France %B 37th International Symposium on Theoretical Aspects of Computer Science %E Paul, Christophe; Bläser, Markus %P 1 - 19 %Z sequence number: 45 %I Schloss Dagstuhl %@ 978-3-95977-140-5 %B Leibniz International Proceedings in Informatics %N 154 %@ false %U https://drops.dagstuhl.de/opus/volltexte/2020/11906/
[5]
R. Becker, Y. Emek, and C. Lenzen, “Low Diameter Graph Decompositions by Approximate Distance Computation,” in 11th Innovations in Theoretical Computer Science Conference (ITICS 2020), Seattle, WA, USA, 2020.
Export
BibTeX
@inproceedings{Becker_ITCS2020, TITLE = {Low Diameter Graph Decompositions by Approximate Distance Computation}, AUTHOR = {Becker, Ruben and Emek, Yuval and Lenzen, Christoph}, LANGUAGE = {eng}, ISSN = {1868-8969}, ISBN = {978-3-95977-134-4}, URL = {urn:nbn:de:0030-drops-117355}, DOI = {10.4230/LIPIcs.ITCS.2020.50}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, BOOKTITLE = {11th Innovations in Theoretical Computer Science Conference (ITICS 2020)}, EDITOR = {Vidick, Thomas}, EID = {50}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {151}, ADDRESS = {Seattle, WA, USA}, }
Endnote
%0 Conference Proceedings %A Becker, Ruben %A Emek, Yuval %A Lenzen, Christoph %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Low Diameter Graph Decompositions by Approximate Distance Computation : %G eng %U http://hdl.handle.net/21.11116/0000-0005-A7A7-2 %R 10.4230/LIPIcs.ITCS.2020.50 %U urn:nbn:de:0030-drops-117355 %D 2020 %B 11th Innovations in Theoretical Computer Science Conference %Z date of event: 2020-01-12 - 2020-01-14 %C Seattle, WA, USA %B 11th Innovations in Theoretical Computer Science Conference %E Vidick, Thomas %Z sequence number: 50 %I Schloss Dagstuhl %@ 978-3-95977-134-4 %B Leibniz International Proceedings in Informatics %N 151 %@ false %U https://drops.dagstuhl.de/opus/volltexte/2020/11735/https://drops.dagstuhl.de/doku/urheberrecht1.html
[6]
K. Bringmann, T. Husfeldt, and M. Magnusson, “Multivariate Analysis of Orthogonal Range Searching and Graph Distances Parameterized by Treewidth,” Algorithmica, vol. 82, no. 8, 2020.
Export
BibTeX
@article{Bringmann_2020a, TITLE = {Multivariate Analysis of Orthogonal Range Searching and Graph Distances Parameterized by Treewidth}, AUTHOR = {Bringmann, Karl and Husfeldt, Thore and Magnusson, M{\aa}ns}, LANGUAGE = {eng}, ISSN = {0178-4617}, DOI = {10.1007/s00453-020-00680-z}, PUBLISHER = {Springer}, ADDRESS = {New York}, YEAR = {2020}, DATE = {2020}, JOURNAL = {Algorithmica}, VOLUME = {82}, NUMBER = {8}, PAGES = {2292--2315}, }
Endnote
%0 Journal Article %A Bringmann, Karl %A Husfeldt, Thore %A Magnusson, Måns %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations %T Multivariate Analysis of Orthogonal Range Searching and Graph Distances Parameterized by Treewidth : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F289-E %R 10.1007/s00453-020-00680-z %7 2020 %D 2020 %J Algorithmica %V 82 %N 8 %& 2292 %P 2292 - 2315 %I Springer %C New York %@ false
[7]
J. Bund, C. Lenzen, and M. Medina, “Optimal Metastability-Containing Sorting via Parallel Prefix Computation,” IEEE Transactions on Computers, vol. 69, no. 2, 2020.
Export
BibTeX
@article{Bund_IEEETOC2020, TITLE = {Optimal Metastability-Containing Sorting via Parallel Prefix Computation}, AUTHOR = {Bund, Johannes and Lenzen, Christoph and Medina, Moti}, LANGUAGE = {eng}, ISSN = {0018-9340}, DOI = {10.1109/TC.2019.2939818}, PUBLISHER = {IEEE}, ADDRESS = {Piscataway, NJ}, YEAR = {2020}, DATE = {2020}, JOURNAL = {IEEE Transactions on Computers}, VOLUME = {69}, NUMBER = {2}, PAGES = {198--211}, }
Endnote
%0 Journal Article %A Bund, Johannes %A Lenzen, Christoph %A Medina, Moti %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Optimal Metastability-Containing Sorting via Parallel Prefix Computation : %G eng %U http://hdl.handle.net/21.11116/0000-0005-9E7F-C %R 10.1109/TC.2019.2939818 %7 2020 %D 2020 %J IEEE Transactions on Computers %V 69 %N 2 %& 198 %P 198 - 211 %I IEEE %C Piscataway, NJ %@ false
[8]
R. H. Chitnis, A. E. Feldmann, M. HajiAghayi, and D. Marx, “Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and Extensions),” SIAM Journal on Computing, vol. 49, no. 2, 2020.
Export
BibTeX
@article{Chitnis2020, TITLE = {Tight Bounds for Planar Strongly Connected {Steiner} Subgraph with Fixed Number of Terminals (and Extensions)}, AUTHOR = {Chitnis, Rajesh H. and Feldmann, Andreas E. and HajiAghayi, MohammadTaghi and Marx, Daniel}, LANGUAGE = {eng}, ISSN = {0097-5397}, DOI = {10.1137/18M122371X}, PUBLISHER = {Society for Industrial and Applied Mathematics.}, ADDRESS = {Philadelphia}, YEAR = {2020}, DATE = {2020}, JOURNAL = {SIAM Journal on Computing}, VOLUME = {49}, NUMBER = {2}, PAGES = {318--364}, }
Endnote
%0 Journal Article %A Chitnis, Rajesh H. %A Feldmann, Andreas E. %A HajiAghayi, MohammadTaghi %A Marx, Daniel %+ External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and Extensions) : %G eng %U http://hdl.handle.net/21.11116/0000-0006-E002-A %R 10.1137/18M122371X %7 2020 %D 2020 %J SIAM Journal on Computing %V 49 %N 2 %& 318 %P 318 - 364 %I Society for Industrial and Applied Mathematics. %C Philadelphia %@ false
[9]
B. Doerr and M. Künnemann, “Improved Protocols and Hardness Results for the Two-Player Cryptogenography Problem,” IEEE Transactions on Information Theory, vol. 66, no. 9, 2020.
Export
BibTeX
@article{Doerr2020, TITLE = {Improved Protocols and Hardness Results for the Two-Player Cryptogenography Problem}, AUTHOR = {Doerr, Benjamin and K{\"u}nnemann, Marvin}, LANGUAGE = {eng}, ISSN = {0018-9448}, DOI = {10.1109/TIT.2020.2978385}, PUBLISHER = {IEEE}, ADDRESS = {Piscataway, NJ}, YEAR = {2020}, DATE = {2020}, JOURNAL = {IEEE Transactions on Information Theory}, VOLUME = {66}, NUMBER = {9}, PAGES = {5729--5741}, }
Endnote
%0 Journal Article %A Doerr, Benjamin %A Künnemann, Marvin %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Improved Protocols and Hardness Results for the Two-Player Cryptogenography Problem : %G eng %U http://hdl.handle.net/21.11116/0000-0006-FAC1-6 %R 10.1109/TIT.2020.2978385 %7 2020 %D 2020 %J IEEE Transactions on Information Theory %V 66 %N 9 %& 5729 %P 5729 - 5741 %I IEEE %C Piscataway, NJ %@ false
[10]
E. Facca, A. Karrenbauer, P. Kolev, and K. Mehlhorn, “Convergence of the Non-Uniform Directed Physarum Model,” Theoretical Computer Science, vol. 816, 2020.
Export
BibTeX
@article{FaccaTCS2020, TITLE = {Convergence of the Non-Uniform Directed Physarum Model}, AUTHOR = {Facca, Enrico and Karrenbauer, Andreas and Kolev, Pavel and Mehlhorn, Kurt}, LANGUAGE = {eng}, ISSN = {0304-3975}, DOI = {10.1016/j.tcs.2020.01.034}, PUBLISHER = {Elsevier}, ADDRESS = {Amsterdam}, YEAR = {2020}, DATE = {2020}, JOURNAL = {Theoretical Computer Science}, VOLUME = {816}, PAGES = {184--194}, }
Endnote
%0 Journal Article %A Facca, Enrico %A Karrenbauer, Andreas %A Kolev, Pavel %A Mehlhorn, Kurt %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Convergence of the Non-Uniform Directed Physarum Model : %G eng %U http://hdl.handle.net/21.11116/0000-0006-97B9-F %R 10.1016/j.tcs.2020.01.034 %7 2020 %D 2020 %J Theoretical Computer Science %V 816 %& 184 %P 184 - 194 %I Elsevier %C Amsterdam %@ false
[11]
Y. Faenza and T. Kavitha, “Quasi-popular Matchings, Optimality, and Extended Formulations,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{Faenza_SODA20, TITLE = {Quasi-popular Matchings, Optimality, and Extended Formulations}, AUTHOR = {Faenza, Yuri and Kavitha, Telikepalli}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.5555/3381089.3381109}, PUBLISHER = {SIAM}, YEAR = {2020}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {325--344}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Faenza, Yuri %A Kavitha, Telikepalli %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Quasi-popular Matchings, Optimality, and Extended Formulations : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F26C-0 %R 10.5555/3381089.3381109 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 325 - 344 %I SIAM %@ 978-1-61197-599-4
[12]
S. Forster, D. Nanongkai, L. Yang, T. Saranurak, and S. Yingchareonthawornchai, “Computing and Testing Small Connectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{Forster_SODA20, TITLE = {Computing and Testing Small Connectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms}, AUTHOR = {Forster, Sebastian and Nanongkai, Danupon and Yang, Liu and Saranurak, Thatchaphol and Yingchareonthawornchai, Sorrachai}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.5555/3381089.3381215}, PUBLISHER = {SIAM}, YEAR = {2020}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {2046--2065}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Forster, Sebastian %A Nanongkai, Danupon %A Yang, Liu %A Saranurak, Thatchaphol %A Yingchareonthawornchai, Sorrachai %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations External Organizations External Organizations %T Computing and Testing Small Connectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F274-6 %R 10.5555/3381089.3381215 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 2046 - 2065 %I SIAM %@ 978-1-61197-599-4
[13]
D. Halperin, S. Har-Peled, K. Mehlhorn, E. Oh, and M. Sharir, “The Maximum-Level Vertex in an Arrangement of Lines,” 2020. [Online]. Available: http://arxiv.org/abs/2003.00518. (arXiv: 2003.00518)
Abstract
Let $L$ be a set of $n$ lines in the plane, not necessarily in general position. We present an efficient algorithm for finding all the vertices of the arrangement $A(L)$ of maximum level, where the level of a vertex $v$ is the number of lines of $L$ that pass strictly below $v$. The problem, posed in Exercise~8.13 in de Berg etal [BCKO08], appears to be much harder than it seems, as this vertex might not be on the upper envelope of the lines. We first assume that all the lines of $L$ are distinct, and distinguish between two cases, depending on whether or not the upper envelope of $L$ contains a bounded edge. In the former case, we show that the number of lines of $L$ that pass above any maximum level vertex $v_0$ is only $O(\log n)$. In the latter case, we establish a similar property that holds after we remove some of the lines that are incident to the single vertex of the upper envelope. We present algorithms that run, in both cases, in optimal $O(n\log n)$ time. We then consider the case where the lines of $L$ are not necessarily distinct. This setup is more challenging, and the best we have is an algorithm that computes all the maximum-level vertices in time $O(n^{4/3}\log^{3}n)$. Finally, we consider a related combinatorial question for degenerate arrangements, where many lines may intersect in a single point, but all the lines are distinct: We bound the complexity of the weighted $k$-level in such an arrangement, where the weight of a vertex is the number of lines that pass through the vertex. We show that the bound in this case is $O(n^{4/3})$, which matches the corresponding bound for non-degenerate arrangements, and we use this bound in the analysis of one of our algorithms.
Export
BibTeX
@online{Halperin_arXiv2003.00518, TITLE = {The Maximum-Level Vertex in an Arrangement of Lines}, AUTHOR = {Halperin, Dan and Har-Peled, Sariel and Mehlhorn, Kurt and Oh, Eunjin and Sharir, Micha}, LANGUAGE = {eng}, URL = {http://arxiv.org/abs/2003.00518}, EPRINT = {2003.00518}, EPRINTTYPE = {arXiv}, YEAR = {2020}, ABSTRACT = {Let $L$ be a set of $n$ lines in the plane, not necessarily in general position. We present an efficient algorithm for finding all the vertices of the arrangement $A(L)$ of maximum level, where the level of a vertex $v$ is the number of lines of $L$ that pass strictly below $v$. The problem, posed in Exercise~8.13 in de Berg etal [BCKO08], appears to be much harder than it seems, as this vertex might not be on the upper envelope of the lines. We first assume that all the lines of $L$ are distinct, and distinguish between two cases, depending on whether or not the upper envelope of $L$ contains a bounded edge. In the former case, we show that the number of lines of $L$ that pass above any maximum level vertex $v_0$ is only $O(\log n)$. In the latter case, we establish a similar property that holds after we remove some of the lines that are incident to the single vertex of the upper envelope. We present algorithms that run, in both cases, in optimal $O(n\log n)$ time. We then consider the case where the lines of $L$ are not necessarily distinct. This setup is more challenging, and the best we have is an algorithm that computes all the maximum-level vertices in time $O(n^{4/3}\log^{3}n)$. Finally, we consider a related combinatorial question for degenerate arrangements, where many lines may intersect in a single point, but all the lines are distinct: We bound the complexity of the weighted $k$-level in such an arrangement, where the weight of a vertex is the number of lines that pass through the vertex. We show that the bound in this case is $O(n^{4/3})$, which matches the corresponding bound for non-degenerate arrangements, and we use this bound in the analysis of one of our algorithms.}, }
Endnote
%0 Report %A Halperin, Dan %A Har-Peled, Sariel %A Mehlhorn, Kurt %A Oh, Eunjin %A Sharir, Micha %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T The Maximum-Level Vertex in an Arrangement of Lines : %G eng %U http://hdl.handle.net/21.11116/0000-0006-AFB1-D %U http://arxiv.org/abs/2003.00518 %D 2020 %X Let $L$ be a set of $n$ lines in the plane, not necessarily in general position. We present an efficient algorithm for finding all the vertices of the arrangement $A(L)$ of maximum level, where the level of a vertex $v$ is the number of lines of $L$ that pass strictly below $v$. The problem, posed in Exercise~8.13 in de Berg etal [BCKO08], appears to be much harder than it seems, as this vertex might not be on the upper envelope of the lines. We first assume that all the lines of $L$ are distinct, and distinguish between two cases, depending on whether or not the upper envelope of $L$ contains a bounded edge. In the former case, we show that the number of lines of $L$ that pass above any maximum level vertex $v_0$ is only $O(\log n)$. In the latter case, we establish a similar property that holds after we remove some of the lines that are incident to the single vertex of the upper envelope. We present algorithms that run, in both cases, in optimal $O(n\log n)$ time. We then consider the case where the lines of $L$ are not necessarily distinct. This setup is more challenging, and the best we have is an algorithm that computes all the maximum-level vertices in time $O(n^{4/3}\log^{3}n)$. Finally, we consider a related combinatorial question for degenerate arrangements, where many lines may intersect in a single point, but all the lines are distinct: We bound the complexity of the weighted $k$-level in such an arrangement, where the weight of a vertex is the number of lines that pass through the vertex. We show that the bound in this case is $O(n^{4/3})$, which matches the corresponding bound for non-degenerate arrangements, and we use this bound in the analysis of one of our algorithms. %K Computer Science, Computational Geometry, cs.CG
[14]
P. Jain, L. Kanesh, and P. Misra, “Conflict Free Version of Covering Problems on Graphs: Classical and Parameterized,” Theory of Computing Systems, 2020.
Export
BibTeX
@article{Jain2020, TITLE = {Conflict Free Version of Covering Problems on Graphs: {C}lassical and Parameterized}, AUTHOR = {Jain, Pallavi and Kanesh, Lawqueen and Misra, Pranabendu}, LANGUAGE = {eng}, ISSN = {1432-4350}, DOI = {10.1007/s00224-019-09964-6}, PUBLISHER = {Springer}, ADDRESS = {New York, NY}, YEAR = {2020}, JOURNAL = {Theory of Computing Systems}, }
Endnote
%0 Journal Article %A Jain, Pallavi %A Kanesh, Lawqueen %A Misra, Pranabendu %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Conflict Free Version of Covering Problems on Graphs: Classical and Parameterized : %G eng %U http://hdl.handle.net/21.11116/0000-0006-90BA-5 %R 10.1007/s00224-019-09964-6 %7 2020 %D 2020 %J Theory of Computing Systems %I Springer %C New York, NY %@ false
[15]
A. Karrenbauer, P. Kolev, and K. Mehlhorn, “Convergence of the Non-Uniform Physarum Dynamics,” Theoretical Computer Science, vol. 816, 2020.
Export
BibTeX
@article{KarrenbauerTCS2020, TITLE = {Convergence of the Non-Uniform Physarum Dynamics}, AUTHOR = {Karrenbauer, Andreas and Kolev, Pavel and Mehlhorn, Kurt}, LANGUAGE = {eng}, ISSN = {0304-3975}, DOI = {10.1016/j.tcs.2020.02.032}, PUBLISHER = {Elsevier}, ADDRESS = {Amsterdam}, YEAR = {2020}, DATE = {2020}, JOURNAL = {Theoretical Computer Science}, VOLUME = {816}, PAGES = {260--269}, }
Endnote
%0 Journal Article %A Karrenbauer, Andreas %A Kolev, Pavel %A Mehlhorn, Kurt %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Convergence of the Non-Uniform Physarum Dynamics : %G eng %U http://hdl.handle.net/21.11116/0000-0006-97C1-5 %R 10.1016/j.tcs.2020.02.032 %7 2020 %D 2020 %J Theoretical Computer Science %V 816 %& 260 %P 260 - 269 %I Elsevier %C Amsterdam %@ false
[16]
P. Kleer and G. Schäfer, “Computation and Efficiency of Potential Function Minimizers of Combinatorial Congestion Games,” Mathematical Programming, 2020.
Export
BibTeX
@article{Kleer2020, TITLE = {Computation and Efficiency of Potential Function Minimizers of Combinatorial Congestion Games}, AUTHOR = {Kleer, Pieter and Sch{\"a}fer, Guido}, LANGUAGE = {eng}, DOI = {10.1007/s10107-020-01546-6}, PUBLISHER = {Springer}, ADDRESS = {New York, NY}, YEAR = {2020}, JOURNAL = {Mathematical Programming}, }
Endnote
%0 Journal Article %A Kleer, Pieter %A Schäfer, Guido %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Computation and Efficiency of Potential Function Minimizers of Combinatorial Congestion Games : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F285-2 %R 10.1007/s10107-020-01546-6 %7 2020 %D 2020 %J Mathematical Programming %I Springer %C New York, NY
[17]
D. Lokshtanov, P. Misra, J. Mukherjee, F. Panolan, G. Philip, and S. Saurabh, “2-Approximating Feedback Vertex Set in Tournaments,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{Lokshtanov_SODA20, TITLE = {2-Approximating Feedback Vertex Set in Tournaments}, AUTHOR = {Lokshtanov, Daniel and Misra, Pranabendu and Mukherjee, Joydeep and Panolan, Fahad and Philip, Geevarghese and Saurabh, Saket}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.5555/3381089.3381150}, PUBLISHER = {SIAM}, YEAR = {2020}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {1010--1018}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Lokshtanov, Daniel %A Misra, Pranabendu %A Mukherjee, Joydeep %A Panolan, Fahad %A Philip, Geevarghese %A Saurabh, Saket %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations External Organizations External Organizations %T 2-Approximating Feedback Vertex Set in Tournaments : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F276-4 %R 10.5555/3381089.3381150 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 1010 - 1018 %I SIAM %@ 978-1-61197-599-4
[18]
E. Oh and H.-K. Ahn, “Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon,” Discrete & Computational Geometry, vol. 63, no. 2, 2020.
Export
BibTeX
@article{Oh2020, TITLE = {Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon}, AUTHOR = {Oh, Eunjin and Ahn, Hee-Kap}, LANGUAGE = {eng}, ISSN = {0179-5376}, DOI = {10.1007/s00454-019-00063-4}, PUBLISHER = {Springer}, YEAR = {2020}, DATE = {2020}, JOURNAL = {Discrete \& Computational Geometry}, VOLUME = {63}, NUMBER = {2}, PAGES = {418--454}, }
Endnote
%0 Journal Article %A Oh, Eunjin %A Ahn, Hee-Kap %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon : %G eng %U http://hdl.handle.net/21.11116/0000-0006-8E04-6 %R 10.1007/s00454-019-00063-4 %7 2019 %D 2020 %J Discrete & Computational Geometry %V 63 %N 2 %& 418 %P 418 - 454 %I Springer %@ false
[19]
A. Oulasvirta, N. R. Dayama, M. Shiripour, M. John, and A. Karrenbauer, “Combinatorial Optimization of Graphical User Interface Designs,” Proceedings of the IEEE, vol. 108, no. 3, 2020.
Export
BibTeX
@article{Oulasvirta2020, TITLE = {Combinatorial Optimization of Graphical User Interface Designs}, AUTHOR = {Oulasvirta, Antti and Dayama, Niraj Ramesh and Shiripour, Morteza and John, Maximilian and Karrenbauer, Andreas}, LANGUAGE = {eng}, ISSN = {0018-9219}, DOI = {10.1109/JPROC.2020.2969687}, PUBLISHER = {IEEE}, ADDRESS = {New York, N.Y.}, YEAR = {2020}, DATE = {2020}, JOURNAL = {Proceedings of the IEEE}, VOLUME = {108}, NUMBER = {3}, PAGES = {434--464}, }
Endnote
%0 Journal Article %A Oulasvirta, Antti %A Dayama, Niraj Ramesh %A Shiripour, Morteza %A John, Maximilian %A Karrenbauer, Andreas %+ External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Combinatorial Optimization of Graphical User Interface Designs : %G eng %U http://hdl.handle.net/21.11116/0000-0006-99BA-C %R 10.1109/JPROC.2020.2969687 %7 2020 %D 2020 %J Proceedings of the IEEE %O Proc. IEEE %V 108 %N 3 %& 434 %P 434 - 464 %I IEEE %C New York, N.Y. %@ false
[20]
B. Ray Chaudhury, J. Garg, and K. Mehlhorn, “EFX exists for three agents,” 2020. [Online]. Available: http://arxiv.org/abs/2002.05119. (arXiv: 2002.05119)
Abstract
We study the problem of distributing a set of indivisible items among agents with additive valuations in a $\mathit{fair}$ manner. The fairness notion under consideration is Envy-freeness up to any item (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture by Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some items are not allocated) with higher Nash welfare than that of any complete EFX allocation.
Export
BibTeX
@online{RayChaudhury_arXiv2002.05119, TITLE = {{EFX} exists for three agents}, AUTHOR = {Ray Chaudhury, Bhaskar and Garg, Jugal and Mehlhorn, Kurt}, LANGUAGE = {eng}, URL = {http://arxiv.org/abs/2002.05119}, EPRINT = {2002.05119}, EPRINTTYPE = {arXiv}, YEAR = {2020}, ABSTRACT = {We study the problem of distributing a set of indivisible items among agents with additive valuations in a $\mathit{fair}$ manner. The fairness notion under consideration is Envy-freeness up to any item (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture by Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some items are not allocated) with higher Nash welfare than that of any complete EFX allocation.}, }
Endnote
%0 Report %A Ray Chaudhury, Bhaskar %A Garg, Jugal %A Mehlhorn, Kurt %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T EFX exists for three agents : %G eng %U http://hdl.handle.net/21.11116/0000-0006-AF99-9 %U http://arxiv.org/abs/2002.05119 %D 2020 %X We study the problem of distributing a set of indivisible items among agents with additive valuations in a $\mathit{fair}$ manner. The fairness notion under consideration is Envy-freeness up to any item (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture by Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some items are not allocated) with higher Nash welfare than that of any complete EFX allocation. %K Computer Science, Computer Science and Game Theory, cs.GT,
[21]
B. Ray Chaudhury, T. Kavitha, K. Mehlhorn, and A. Sgouritsa, “A Little Charity Guarantees Almost Envy-Freeness,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{RayChaudhury_SODA20, TITLE = {A Little Charity Guarantees Almost Envy-Freeness}, AUTHOR = {Ray Chaudhury, Bhaskar and Kavitha, Telikepalli and Mehlhorn, Kurt and Sgouritsa, Alkmini}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.1137/1.9781611975994.162}, PUBLISHER = {SIAM}, YEAR = {2020}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {2658 --2672}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Ray Chaudhury, Bhaskar %A Kavitha, Telikepalli %A Mehlhorn, Kurt %A Sgouritsa, Alkmini %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T A Little Charity Guarantees Almost Envy-Freeness : %G eng %U http://hdl.handle.net/21.11116/0000-0006-AF89-B %R 10.1137/1.9781611975994.162 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 2658 - 2672 %I SIAM %@ 978-1-61197-599-4
[22]
M. Roth and P. Wellnitz, “Counting and Finding Homomorphisms is Universal for Parameterized Complexity Theory,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{Roth_SODA20, TITLE = {Counting and Finding Homomorphisms is Universal for Parameterized Complexity Theory}, AUTHOR = {Roth, Marc and Wellnitz, Philip}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.1137/1.9781611975994.133}, PUBLISHER = {SIAM}, YEAR = {2020}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {2161--2180}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Roth, Marc %A Wellnitz, Philip %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Counting and Finding Homomorphisms is Universal for Parameterized Complexity Theory : %G eng %U http://hdl.handle.net/21.11116/0000-0005-8665-2 %R 10.1137/1.9781611975994.133 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 2161 - 2180 %I SIAM %@ 978-1-61197-599-4
[23]
S. Saurabh, U. dos S. Souza, and P. Tale, “On the Parameterized Complexity of Grid Contraction,” in 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020), órshavn, Faroe Islands, 2020.
Export
BibTeX
@inproceedings{Saket_SWAT2020, TITLE = {On the Parameterized Complexity of Grid Contraction}, AUTHOR = {Saurabh, Saket and Souza, U{\'e}verton dos Santos and Tale, Prafullkumar}, LANGUAGE = {eng}, ISBN = {978-3-95977-150-4}, URL = {urn:nbn:de:0030-drops-122810}, DOI = {10.4230/LIPIcs.SWAT.2020.34}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, BOOKTITLE = {17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)}, EDITOR = {Albers, Susanne}, EID = {34}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {162}, ADDRESS = {{\'o}rshavn, Faroe Islands}, }
Endnote
%0 Conference Proceedings %A Saurabh, Saket %A Souza, Uéverton dos Santos %A Tale, Prafullkumar %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T On the Parameterized Complexity of Grid Contraction : %G eng %U http://hdl.handle.net/21.11116/0000-0006-8BA6-2 %R 10.4230/LIPIcs.SWAT.2020.34 %U urn:nbn:de:0030-drops-122810 %D 2020 %B 17th Scandinavian Symposiumand Workshops on Algorithm Theory %Z date of event: 2020-06-22 - 2020-06-24 %C órshavn, Faroe Islands %B 17th Scandinavian Symposium and Workshops on Algorithm Theory %E Albers, Susanne %Z sequence number: 34 %I Schloss Dagstuhl %@ 978-3-95977-150-4 %B Leibniz International Proceedings in Informatics %N 162 %U https://drops.dagstuhl.de/opus/volltexte/2020/12281/