Current Year

PhD
[1]
A. Tigunova, “Extracting personal information from conversations,” Universität des Saarlandes, Saarbrücken, 2022.
Abstract
Personal knowledge is a versatile resource that is valuable for a wide range of downstream applications. Background facts about users can allow chatbot assistants to produce more topical and empathic replies. In the context of recommendation and retrieval models, personal facts can be used to customize the ranking results for individual users. A Personal Knowledge Base, populated with personal facts, such as demographic information, interests and interpersonal relationships, is a unique endpoint for storing and querying personal knowledge. Such knowledge bases are easily interpretable and can provide users with full control over their own personal knowledge, including revising stored facts and managing access by downstream services for personalization purposes. To alleviate users from extensive manual effort to build such personal knowledge base, we can leverage automated extraction methods applied to the textual content of the users, such as dialogue transcripts or social media posts. Mainstream extraction methods specialize on well-structured data, such as biographical texts or encyclopedic articles, which are rare for most people. In turn, conversational data is abundant but challenging to process and requires specialized methods for extraction of personal facts. In this dissertation we address the acquisition of personal knowledge from conversational data. We propose several novel deep learning models for inferring speakers’ personal attributes: • Demographic attributes, age, gender, profession and family status, are inferred by HAMs - hierarchical neural classifiers with attention mechanism. Trained HAMs can be transferred between different types of conversational data and provide interpretable predictions. • Long-tailed personal attributes, hobby and profession, are predicted with CHARM - a zero-shot learning model, overcoming the lack of labeled training samples for rare attribute values. By linking conversational utterances to external sources, CHARM is able to predict attribute values which it never saw during training. • Interpersonal relationships are inferred with PRIDE - a hierarchical transformer-based model. To accurately predict fine-grained relationships, PRIDE leverages personal traits of the speakers and the style of conversational utterances. Experiments with various conversational texts, including Reddit discussions and movie scripts, demonstrate the viability of our methods and their superior performance compared to state-of-the-art baselines.
Export
BibTeX
@phdthesis{Tiguphd2021, TITLE = {Extracting personal information from conversations}, AUTHOR = {Tigunova, Anna}, LANGUAGE = {eng}, URL = {nbn:de:bsz:291--ds-356280}, DOI = {10.22028/D291-35628}, SCHOOL = {Universit{\"a}t des Saarlandes}, ADDRESS = {Saarbr{\"u}cken}, YEAR = {2022}, DATE = {2022}, ABSTRACT = {Personal knowledge is a versatile resource that is valuable for a wide range of downstream applications. Background facts about users can allow chatbot assistants to produce more topical and empathic replies. In the context of recommendation and retrieval models, personal facts can be used to customize the ranking results for individual users. A Personal Knowledge Base, populated with personal facts, such as demographic information, interests and interpersonal relationships, is a unique endpoint for storing and querying personal knowledge. Such knowledge bases are easily interpretable and can provide users with full control over their own personal knowledge, including revising stored facts and managing access by downstream services for personalization purposes. To alleviate users from extensive manual effort to build such personal knowledge base, we can leverage automated extraction methods applied to the textual content of the users, such as dialogue transcripts or social media posts. Mainstream extraction methods specialize on well-structured data, such as biographical texts or encyclopedic articles, which are rare for most people. In turn, conversational data is abundant but challenging to process and requires specialized methods for extraction of personal facts. In this dissertation we address the acquisition of personal knowledge from conversational data. We propose several novel deep learning models for inferring speakers{\textquoteright} personal attributes: \mbox{$\bullet$} Demographic attributes, age, gender, profession and family status, are inferred by HAMs -- hierarchical neural classifiers with attention mechanism. Trained HAMs can be transferred between different types of conversational data and provide interpretable predictions. \mbox{$\bullet$} Long-tailed personal attributes, hobby and profession, are predicted with CHARM -- a zero-shot learning model, overcoming the lack of labeled training samples for rare attribute values. By linking conversational utterances to external sources, CHARM is able to predict attribute values which it never saw during training. \mbox{$\bullet$} Interpersonal relationships are inferred with PRIDE -- a hierarchical transformer-based model. To accurately predict fine-grained relationships, PRIDE leverages personal traits of the speakers and the style of conversational utterances. Experiments with various conversational texts, including Reddit discussions and movie scripts, demonstrate the viability of our methods and their superior performance compared to state-of-the-art baselines.}, }
Endnote
%0 Thesis %A Tigunova, Anna %Y Weikum, Gerhard %A referee: Yates, Andrew %A referee: Demberg,, Vera %+ Databases and Information Systems, MPI for Informatics, Max Planck Society International Max Planck Research School, MPI for Informatics, Max Planck Society Databases and Information Systems, MPI for Informatics, Max Planck Society Databases and Information Systems, MPI for Informatics, Max Planck Society External Organizations %T Extracting personal information from conversations : %G eng %U http://hdl.handle.net/21.11116/0000-000A-3C9E-2 %R 10.22028/D291-35628 %U nbn:de:bsz:291--ds-356280 %I Universität des Saarlandes %C Saarbrücken %D 2022 %P 126 p. %V phd %9 phd %X Personal knowledge is a versatile resource that is valuable for a wide range of downstream applications. Background facts about users can allow chatbot assistants to produce more topical and empathic replies. In the context of recommendation and retrieval models, personal facts can be used to customize the ranking results for individual users. A Personal Knowledge Base, populated with personal facts, such as demographic information, interests and interpersonal relationships, is a unique endpoint for storing and querying personal knowledge. Such knowledge bases are easily interpretable and can provide users with full control over their own personal knowledge, including revising stored facts and managing access by downstream services for personalization purposes. To alleviate users from extensive manual effort to build such personal knowledge base, we can leverage automated extraction methods applied to the textual content of the users, such as dialogue transcripts or social media posts. Mainstream extraction methods specialize on well-structured data, such as biographical texts or encyclopedic articles, which are rare for most people. In turn, conversational data is abundant but challenging to process and requires specialized methods for extraction of personal facts. In this dissertation we address the acquisition of personal knowledge from conversational data. We propose several novel deep learning models for inferring speakers’ personal attributes: • Demographic attributes, age, gender, profession and family status, are inferred by HAMs - hierarchical neural classifiers with attention mechanism. Trained HAMs can be transferred between different types of conversational data and provide interpretable predictions. • Long-tailed personal attributes, hobby and profession, are predicted with CHARM - a zero-shot learning model, overcoming the lack of labeled training samples for rare attribute values. By linking conversational utterances to external sources, CHARM is able to predict attribute values which it never saw during training. • Interpersonal relationships are inferred with PRIDE - a hierarchical transformer-based model. To accurately predict fine-grained relationships, PRIDE leverages personal traits of the speakers and the style of conversational utterances. Experiments with various conversational texts, including Reddit discussions and movie scripts, demonstrate the viability of our methods and their superior performance compared to state-of-the-art baselines. %U https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/32546