Current Year

[1]
A. Abboud, K. Censor-Hillel, S. Khoury, and C. Lenzen, “Fooling Views: A New Lower Bound Technique for Distributed Computations under Congestion,” Distributed Computing, 2020.
Export
BibTeX
@article{Abboud2020, TITLE = {Fooling Views: A New Lower Bound Technique for Distributed Computations under Congestion}, AUTHOR = {Abboud, Amir and Censor-Hillel, Keren and Khoury, Seri and Lenzen, Christoph}, LANGUAGE = {eng}, ISSN = {0178-2770}, DOI = {10.1007/s00446-020-00373-4}, PUBLISHER = {Springer}, ADDRESS = {New York, NY}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, JOURNAL = {Distributed Computing}, }
Endnote
%0 Journal Article %A Abboud, Amir %A Censor-Hillel, Keren %A Khoury, Seri %A Lenzen, Christoph %+ External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Fooling Views: A New Lower Bound Technique for Distributed Computations under Congestion : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F28E-9 %R 10.1007/s00446-020-00373-4 %7 2020 %D 2020 %J Distributed Computing %I Springer %C New York, NY %@ false
[2]
A. Abboud, K. Bringmann, D. Hermelin, and D. Shabtay, “Scheduling Lower Bounds via AND Subset Sum,” in 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), Saarbrücken, Germany (Virtual Conference), 2020.
Export
BibTeX
@inproceedings{Abboud_ICALP2020, TITLE = {Scheduling Lower Bounds via AND Subset Sum}, AUTHOR = {Abboud, Amir and Bringmann, Karl and Hermelin, Danny and Shabtay, Dvir}, LANGUAGE = {eng}, ISSN = {1868-8969}, ISBN = {978-3-95977-138-2}, URL = {urn:nbn:de:0030-drops-124119}, DOI = {10.4230/LIPIcs.ICALP.2020.4}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, EDITOR = {Czumaj, Artur and Dawa, Anuj and Merelli, Emanuela}, EID = {4}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {168}, ADDRESS = {Saarbr{\"u}cken, Germany (Virtual Conference)}, }
Endnote
%0 Conference Proceedings %A Abboud, Amir %A Bringmann, Karl %A Hermelin, Danny %A Shabtay, Dvir %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations %T Scheduling Lower Bounds via AND Subset Sum : %G eng %U http://hdl.handle.net/21.11116/0000-0007-2826-2 %R 10.4230/LIPIcs.ICALP.2020.4 %U urn:nbn:de:0030-drops-124119 %D 2020 %B 47th International Colloquium on Automata, Languages, and Programming %Z date of event: 2020-07-08 - 2020-07-11 %C Saarbrücken, Germany (Virtual Conference) %B 47th International Colloquium on Automata, Languages, and Programming %E Czumaj, Artur; Dawa, Anuj; Merelli, Emanuela %Z sequence number: 4 %I Schloss Dagstuhl %@ 978-3-95977-138-2 %B Leibniz International Proceedings in Informatics %N 168 %@ false %U https://drops.dagstuhl.de/opus/volltexte/2020/12411/https://creativecommons.org/licenses/by/3.0/legalcode
[3]
A. Abboud, K. Bringmann, D. Hermelin, and D. Shabtay, “Scheduling Lower Bounds via AND Subset Sum,” 2020. [Online]. Available: https://arxiv.org/abs/2003.07113. (arXiv: 2003.07113)
Abstract
Given $N$ instances $(X_1,t_1),\ldots,(X_N,t_N)$ of Subset Sum, the AND Subset Sum problem asks to determine whether all of these instances are yes-instances; that is, whether each set of integers $X_i$ has a subset that sums up to the target integer $t_i$. We prove that this problem cannot be solved in time $\tilde{O}((N \cdot t_{max})^{1-\epsilon})$, for $t_{max}=\max_i t_i$ and any $\epsilon > 0$, assuming the $\forall \exists$ Strong Exponential Time Hypothesis ($\forall \exists$-SETH). We then use this result to exclude $\tilde{O}(n+P_{max} \cdot n^{1-\epsilon})$-time algorithms for several scheduling problems on $n$ jobs with maximum processing time $P_{max}$, based on $\forall \exists$-SETH. These include classical problems such as $1||\sum w_jU_j$, the problem of minimizing the total weight of tardy jobs on a single machine, and $P_2||\sum U_j$, the problem of minimizing the number of tardy jobs on two identical parallel machines.
Export
BibTeX
@online{Abboud_arXIv2003.07113, TITLE = {Scheduling Lower Bounds via {AND} Subset Sum}, AUTHOR = {Abboud, Amir and Bringmann, Karl and Hermelin, Danny and Shabtay, Dvir}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2003.07113}, EPRINT = {2003.07113}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {Given $N$ instances $(X_1,t_1),\ldots,(X_N,t_N)$ of Subset Sum, the AND Subset Sum problem asks to determine whether all of these instances are yes-instances; that is, whether each set of integers $X_i$ has a subset that sums up to the target integer $t_i$. We prove that this problem cannot be solved in time $\tilde{O}((N \cdot t_{max})^{1-\epsilon})$, for $t_{max}=\max_i t_i$ and any $\epsilon > 0$, assuming the $\forall \exists$ Strong Exponential Time Hypothesis ($\forall \exists$-SETH). We then use this result to exclude $\tilde{O}(n+P_{max} \cdot n^{1-\epsilon})$-time algorithms for several scheduling problems on $n$ jobs with maximum processing time $P_{max}$, based on $\forall \exists$-SETH. These include classical problems such as $1||\sum w_jU_j$, the problem of minimizing the total weight of tardy jobs on a single machine, and $P_2||\sum U_j$, the problem of minimizing the number of tardy jobs on two identical parallel machines.}, }
Endnote
%0 Report %A Abboud, Amir %A Bringmann, Karl %A Hermelin, Danny %A Shabtay, Dvir %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations %T Scheduling Lower Bounds via AND Subset Sum : %G eng %U http://hdl.handle.net/21.11116/0000-0007-2A52-E %U https://arxiv.org/abs/2003.07113 %D 2020 %X Given $N$ instances $(X_1,t_1),\ldots,(X_N,t_N)$ of Subset Sum, the AND Subset Sum problem asks to determine whether all of these instances are yes-instances; that is, whether each set of integers $X_i$ has a subset that sums up to the target integer $t_i$. We prove that this problem cannot be solved in time $\tilde{O}((N \cdot t_{max})^{1-\epsilon})$, for $t_{max}=\max_i t_i$ and any $\epsilon > 0$, assuming the $\forall \exists$ Strong Exponential Time Hypothesis ($\forall \exists$-SETH). We then use this result to exclude $\tilde{O}(n+P_{max} \cdot n^{1-\epsilon})$-time algorithms for several scheduling problems on $n$ jobs with maximum processing time $P_{max}$, based on $\forall \exists$-SETH. These include classical problems such as $1||\sum w_jU_j$, the problem of minimizing the total weight of tardy jobs on a single machine, and $P_2||\sum U_j$, the problem of minimizing the number of tardy jobs on two identical parallel machines. %K Computer Science, Data Structures and Algorithms, cs.DS
[4]
A. Agrawal, D. Lokshtanov, P. Misra, S. Saurabh, and M. Zehavi, “Polylogarithmic Approximation Algorithms for Weighted-F-deletion,” ACM Transactions on Algorithms, vol. 16, no. 4, 2020.
Export
BibTeX
@article{Agrawal2020, TITLE = {Polylogarithmic Approximation Algorithms for Weighted-F-deletion}, AUTHOR = {Agrawal, Akanksha and Lokshtanov, Daniel and Misra, Pranabendu and Saurabh, Saket and Zehavi, Meirav}, LANGUAGE = {eng}, ISSN = {1549-6325}, DOI = {10.1145/3389338}, PUBLISHER = {ACM}, ADDRESS = {New York, NY}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, JOURNAL = {ACM Transactions on Algorithms}, VOLUME = {16}, NUMBER = {4}, EID = {51}, }
Endnote
%0 Journal Article %A Agrawal, Akanksha %A Lokshtanov, Daniel %A Misra, Pranabendu %A Saurabh, Saket %A Zehavi, Meirav %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations %T Polylogarithmic Approximation Algorithms for Weighted-F-deletion : %G eng %U http://hdl.handle.net/21.11116/0000-0007-4903-4 %R 10.1145/3389338 %7 2020 %D 2020 %J ACM Transactions on Algorithms %V 16 %N 4 %Z sequence number: 51 %I ACM %C New York, NY %@ false
[5]
H. Alkema, M. de Berg, and S. Kisfaludi-Bak, “Euclidean TSP in Narrow Strips,” in 36th International Symposium on Computational Geometry (SoCG 2020), Zürich, Switzerland (Virtual Conference), 2020.
Export
BibTeX
@inproceedings{AlkemaBK20, TITLE = {Euclidean {TSP} in Narrow Strips}, AUTHOR = {Alkema, Henk and de Berg, Mark and Kisfaludi-Bak, S{\'a}ndor}, LANGUAGE = {eng}, ISBN = {978-3-95977-143-6}, URL = {urn:nbn:de:0030-drops-121628}, DOI = {10.4230/LIPIcs.SoCG.2020.4}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {36th International Symposium on Computational Geometry (SoCG 2020)}, EDITOR = {Cabello, Sergio and Chen, Danny Z.}, PAGES = {1--16}, EID = {4}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {164}, ADDRESS = {Z{\"u}rich, Switzerland (Virtual Conference)}, }
Endnote
%0 Conference Proceedings %A Alkema, Henk %A de Berg, Mark %A Kisfaludi-Bak, Sándor %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Euclidean TSP in Narrow Strips : %G eng %U http://hdl.handle.net/21.11116/0000-0007-76E5-2 %R 10.4230/LIPIcs.SoCG.2020.4 %U urn:nbn:de:0030-drops-121628 %D 2020 %B 36th International Symposium on Computational Geometry %Z date of event: 2020-06-23 - 2020-06-26 %C Zürich, Switzerland (Virtual Conference) %B 36th International Symposium on Computational Geometry %E Cabello, Sergio; Chen, Danny Z. %P 1 - 16 %Z sequence number: 4 %I Schloss Dagstuhl %@ 978-3-95977-143-6 %B Leibniz International Proceedings in Informatics %N 164 %U https://drops.dagstuhl.de/opus/volltexte/2020/12162/https://creativecommons.org/licenses/by/3.0/legalcode
[6]
H. Alkema, M. de Berg, and S. Kisfaludi-Bak, “Euclidean TSP in Narrow Strip,” 2020. [Online]. Available: https://arxiv.org/abs/2003.09948. (arXiv: 2003.09948)
Abstract
We investigate how the complexity of Euclidean TSP for point sets $P$ inside the strip $(-\infty,+\infty)\times [0,\delta]$ depends on the strip width $\delta$. We obtain two main results. First, for the case where the points have distinct integer $x$-coordinates, we prove that a shortest bitonic tour (which can be computed in $O(n\log^2 n)$ time using an existing algorithm) is guaranteed to be a shortest tour overall when $\delta\leq 2\sqrt{2}$, a bound which is best possible. Second, we present an algorithm that is fixed-parameter tractable with respect to $\delta$. More precisely, our algorithm has running time $2^{O(\sqrt{\delta})} n^2$ for sparse point sets, where each $1\times\delta$ rectangle inside the strip contains $O(1)$ points. For random point sets, where the points are chosen uniformly at random from the rectangle~$[0,n]\times [0,\delta]$, it has an expected running time of $2^{O(\sqrt{\delta})} n^2 + O(n^3)$.
Export
BibTeX
@online{Alkema_arXiv2003.09948, TITLE = {Euclidean {TSP} in Narrow Strip}, AUTHOR = {Alkema, Henk and de Berg, Mark and Kisfaludi-Bak, S{\'a}ndor}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2003.09948}, EPRINT = {2003.09948}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {We investigate how the complexity of Euclidean TSP for point sets $P$ inside the strip $(-\infty,+\infty)\times [0,\delta]$ depends on the strip width $\delta$. We obtain two main results. First, for the case where the points have distinct integer $x$-coordinates, we prove that a shortest bitonic tour (which can be computed in $O(n\log^2 n)$ time using an existing algorithm) is guaranteed to be a shortest tour overall when $\delta\leq 2\sqrt{2}$, a bound which is best possible. Second, we present an algorithm that is fixed-parameter tractable with respect to $\delta$. More precisely, our algorithm has running time $2^{O(\sqrt{\delta})} n^2$ for sparse point sets, where each $1\times\delta$ rectangle inside the strip contains $O(1)$ points. For random point sets, where the points are chosen uniformly at random from the rectangle~$[0,n]\times [0,\delta]$, it has an expected running time of $2^{O(\sqrt{\delta})} n^2 + O(n^3)$.}, }
Endnote
%0 Report %A Alkema, Henk %A de Berg, Mark %A Kisfaludi-Bak, Sándor %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Euclidean TSP in Narrow Strip : %G eng %U http://hdl.handle.net/21.11116/0000-0007-77A3-B %U https://arxiv.org/abs/2003.09948 %D 2020 %X We investigate how the complexity of Euclidean TSP for point sets $P$ inside the strip $(-\infty,+\infty)\times [0,\delta]$ depends on the strip width $\delta$. We obtain two main results. First, for the case where the points have distinct integer $x$-coordinates, we prove that a shortest bitonic tour (which can be computed in $O(n\log^2 n)$ time using an existing algorithm) is guaranteed to be a shortest tour overall when $\delta\leq 2\sqrt{2}$, a bound which is best possible. Second, we present an algorithm that is fixed-parameter tractable with respect to $\delta$. More precisely, our algorithm has running time $2^{O(\sqrt{\delta})} n^2$ for sparse point sets, where each $1\times\delta$ rectangle inside the strip contains $O(1)$ points. For random point sets, where the points are chosen uniformly at random from the rectangle~$[0,n]\times [0,\delta]$, it has an expected running time of $2^{O(\sqrt{\delta})} n^2 + O(n^3)$. %K Computer Science, Computational Geometry, cs.CG
[7]
G. Amanatidis and P. Kleer, “Rapid Mixing of the Switch Markov Chain for Strongly Stable Degree Sequences,” Random Structures and Algorithms, vol. 57, no. 3, 2020.
Export
BibTeX
@article{Amanatidis2020, TITLE = {Rapid mixing of the switch {M}arkov chain for strongly stable degree sequences}, AUTHOR = {Amanatidis, Georgios and Kleer, Pieter}, LANGUAGE = {eng}, ISSN = {1042-9832}, DOI = {10.1002/rsa.20949}, PUBLISHER = {Wiley}, ADDRESS = {New York, N.Y.}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {Random Structures and Algorithms}, VOLUME = {57}, NUMBER = {3}, PAGES = {637--657}, }
Endnote
%0 Journal Article %A Amanatidis, Georgios %A Kleer, Pieter %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Rapid Mixing of the Switch Markov Chain for Strongly Stable Degree Sequences : %G eng %U http://hdl.handle.net/21.11116/0000-0006-DC7A-A %R 10.1002/rsa.20949 %7 2020 %D 2020 %J Random Structures and Algorithms %V 57 %N 3 %& 637 %P 637 - 657 %I Wiley %C New York, N.Y. %@ false
[8]
A. Antoniadis, N. Garg, G. Kumar, and N. Kumar, “Parallel Machine Scheduling to Minimize Energy Consumption,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{Antoniadis_SODA20, TITLE = {Parallel Machine Scheduling to Minimize Energy Consumption}, AUTHOR = {Antoniadis, Antonios and Garg, Naveen and Kumar, Gunjan and Kumar, Nikhil}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.5555/3381089.3381257}, PUBLISHER = {SIAM}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {2758--2769}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Antoniadis, Antonios %A Garg, Naveen %A Kumar, Gunjan %A Kumar, Nikhil %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations External Organizations %T Parallel Machine Scheduling to Minimize Energy Consumption : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F26A-2 %R 10.5555/3381089.3381257 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 2758 - 2769 %I SIAM %@ 978-1-61197-599-4
[9]
A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, and D. Vaz, “On the Approximability of the Traveling Salesman Problem with Line Neighborhoods,” 2020. [Online]. Available: https://arxiv.org/abs/2008.12075. (arXiv: 2008.12075)
Abstract
We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in $\mathbb{R}^d$, with $d\ge 3$, are $\mathrm{NP}$-hardness and an $O(\log^3 n)$-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in $\mathbb{R}^d$ is APX-hard for any $d\ge 3$. More generally, this implies that TSP with $k$-dimensional flats does not admit a PTAS for any $1\le k \leq d-2$ unless $\mathrm{P}=\mathrm{NP}$, which gives a complete classification of the approximability of these problems, as there are known PTASes for $k=0$ (i.e., points) and $k=d-1$ (hyperplanes). We are able to give a stronger inapproximability factor for $d=O(\log n)$ by showing that TSP with lines does not admit a $(2-\epsilon)$-approximation in $d$ dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an $O(\log^2 n)$-approximation algorithm for the problem, albeit with a running time of $n^{O(\log\log n)}$.
Export
BibTeX
@online{Antoniadis_arXiv2008.12075, TITLE = {On the Approximability of the Traveling Salesman Problem with Line Neighborhoods}, AUTHOR = {Antoniadis, Antonios and Kisfaludi-Bak, S{\'a}ndor and Laekhanukit, Bundit and Vaz, Daniel}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2008.12075}, EPRINT = {2008.12075}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in $\mathbb{R}^d$, with $d\ge 3$, are $\mathrm{NP}$-hardness and an $O(\log^3 n)$-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in $\mathbb{R}^d$ is APX-hard for any $d\ge 3$. More generally, this implies that TSP with $k$-dimensional flats does not admit a PTAS for any $1\le k \leq d-2$ unless $\mathrm{P}=\mathrm{NP}$, which gives a complete classification of the approximability of these problems, as there are known PTASes for $k=0$ (i.e., points) and $k=d-1$ (hyperplanes). We are able to give a stronger inapproximability factor for $d=O(\log n)$ by showing that TSP with lines does not admit a $(2-\epsilon)$-approximation in $d$ dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an $O(\log^2 n)$-approximation algorithm for the problem, albeit with a running time of $n^{O(\log\log n)}$.}, }
Endnote
%0 Report %A Antoniadis, Antonios %A Kisfaludi-Bak, Sándor %A Laekhanukit, Bundit %A Vaz, Daniel %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations %T On the Approximability of the Traveling Salesman Problem with Line Neighborhoods : %G eng %U http://hdl.handle.net/21.11116/0000-0007-77AD-1 %U https://arxiv.org/abs/2008.12075 %D 2020 %X We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in $\mathbb{R}^d$, with $d\ge 3$, are $\mathrm{NP}$-hardness and an $O(\log^3 n)$-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in $\mathbb{R}^d$ is APX-hard for any $d\ge 3$. More generally, this implies that TSP with $k$-dimensional flats does not admit a PTAS for any $1\le k \leq d-2$ unless $\mathrm{P}=\mathrm{NP}$, which gives a complete classification of the approximability of these problems, as there are known PTASes for $k=0$ (i.e., points) and $k=d-1$ (hyperplanes). We are able to give a stronger inapproximability factor for $d=O(\log n)$ by showing that TSP with lines does not admit a $(2-\epsilon)$-approximation in $d$ dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an $O(\log^2 n)$-approximation algorithm for the problem, albeit with a running time of $n^{O(\log\log n)}$. %K Computer Science, Data Structures and Algorithms, cs.DS
[10]
S. Arunachalam, S. Chakraborty, M. Koucký, N. Saurabh, and R. de Wolf, “Improved Bounds on Fourier Entropy and Min-entropy,” in 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020), Montpellier, France, 2020.
Export
BibTeX
@inproceedings{Arunachalam_STACS2020, TITLE = {Improved Bounds on {Fourier} Entropy and Min-entropy}, AUTHOR = {Arunachalam, Srinivasan and Chakraborty, Sourav and Kouck{\'y}, Michal and Saurabh, Nitin and de Wolf, Ronald}, LANGUAGE = {eng}, ISSN = {1868-8969}, ISBN = {978-3-95977-140-5}, URL = {urn:nbn:de:0030-drops-119062}, DOI = {10.4230/LIPIcs.STACS.2020.45}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)}, EDITOR = {Paul, Christophe and Bl{\"a}ser, Markus}, PAGES = {1--19}, EID = {45}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {154}, ADDRESS = {Montpellier, France}, }
Endnote
%0 Conference Proceedings %A Arunachalam, Srinivasan %A Chakraborty, Sourav %A Koucký, Michal %A Saurabh, Nitin %A de Wolf, Ronald %+ External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Improved Bounds on Fourier Entropy and Min-entropy : %G eng %U http://hdl.handle.net/21.11116/0000-0006-97AB-F %R 10.4230/LIPIcs.STACS.2020.45 %U urn:nbn:de:0030-drops-119062 %D 2020 %B 37th International Symposium on Theoretical Aspects of Computer Science %Z date of event: 2020-03-10 - 2020-03-13 %C Montpellier, France %B 37th International Symposium on Theoretical Aspects of Computer Science %E Paul, Christophe; Bläser, Markus %P 1 - 19 %Z sequence number: 45 %I Schloss Dagstuhl %@ 978-3-95977-140-5 %B Leibniz International Proceedings in Informatics %N 154 %@ false %U https://drops.dagstuhl.de/opus/volltexte/2020/11906/
[11]
K. Axiotis, A. Backurs, K. Bringmann, C. Jin, V. Nakos, C. Tzamos, and H. Wu, “Fast and Simple Modular Subset Sum,” 2020. [Online]. Available: https://arxiv.org/abs/2008.10577. (arXiv: 2008.10577)
Abstract
We revisit the Subset Sum problem over the finite cyclic group $\mathbb{Z}_m$ for some given integer $m$. A series of recent works has provided asymptotically optimal algorithms for this problem under the Strong Exponential Time Hypothesis. Koiliaris and Xu (SODA'17, TALG'19) gave a deterministic algorithm running in time $\tilde{O}(m^{5/4})$, which was later improved to $O(m \log^7 m)$ randomized time by Axiotis et al. (SODA'19). In this work, we present two simple algorithms for the Modular Subset Sum problem running in near-linear time in $m$, both efficiently implementing Bellman's iteration over $\mathbb{Z}_m$. The first one is a randomized algorithm running in time $O(m\log^2 m)$, that is based solely on rolling hash and an elementary data-structure for prefix sums; to illustrate its simplicity we provide a short and efficient implementation of the algorithm in Python. Our second solution is a deterministic algorithm running in time $O(m\ \mathrm{polylog}\ m)$, that uses dynamic data structures for string manipulation. We further show that the techniques developed in this work can also lead to simple algorithms for the All Pairs Non-Decreasing Paths Problem (APNP) on undirected graphs, matching the asymptotically optimal running time of $\tilde{O}(n^2)$ provided in the recent work of Duan et al. (ICALP'19).
Export
BibTeX
@online{Axiotis_arXiv2008.10577, TITLE = {Fast and Simple Modular Subset Sum}, AUTHOR = {Axiotis, Kyriakos and Backurs, Arturs and Bringmann, Karl and Jin, Ce and Nakos, Vasileios and Tzamos, Christos and Wu, Hongxun}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2008.10577}, EPRINT = {2008.10577}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {We revisit the Subset Sum problem over the finite cyclic group $\mathbb{Z}_m$ for some given integer $m$. A series of recent works has provided asymptotically optimal algorithms for this problem under the Strong Exponential Time Hypothesis. Koiliaris and Xu (SODA'17, TALG'19) gave a deterministic algorithm running in time $\tilde{O}(m^{5/4})$, which was later improved to $O(m \log^7 m)$ randomized time by Axiotis et al. (SODA'19). In this work, we present two simple algorithms for the Modular Subset Sum problem running in near-linear time in $m$, both efficiently implementing Bellman's iteration over $\mathbb{Z}_m$. The first one is a randomized algorithm running in time $O(m\log^2 m)$, that is based solely on rolling hash and an elementary data-structure for prefix sums; to illustrate its simplicity we provide a short and efficient implementation of the algorithm in Python. Our second solution is a deterministic algorithm running in time $O(m\ \mathrm{polylog}\ m)$, that uses dynamic data structures for string manipulation. We further show that the techniques developed in this work can also lead to simple algorithms for the All Pairs Non-Decreasing Paths Problem (APNP) on undirected graphs, matching the asymptotically optimal running time of $\tilde{O}(n^2)$ provided in the recent work of Duan et al. (ICALP'19).}, }
Endnote
%0 Report %A Axiotis, Kyriakos %A Backurs, Arturs %A Bringmann, Karl %A Jin, Ce %A Nakos, Vasileios %A Tzamos, Christos %A Wu, Hongxun %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations %T Fast and Simple Modular Subset Sum : %G eng %U http://hdl.handle.net/21.11116/0000-0007-2A5B-5 %U https://arxiv.org/abs/2008.10577 %D 2020 %X We revisit the Subset Sum problem over the finite cyclic group $\mathbb{Z}_m$ for some given integer $m$. A series of recent works has provided asymptotically optimal algorithms for this problem under the Strong Exponential Time Hypothesis. Koiliaris and Xu (SODA'17, TALG'19) gave a deterministic algorithm running in time $\tilde{O}(m^{5/4})$, which was later improved to $O(m \log^7 m)$ randomized time by Axiotis et al. (SODA'19). In this work, we present two simple algorithms for the Modular Subset Sum problem running in near-linear time in $m$, both efficiently implementing Bellman's iteration over $\mathbb{Z}_m$. The first one is a randomized algorithm running in time $O(m\log^2 m)$, that is based solely on rolling hash and an elementary data-structure for prefix sums; to illustrate its simplicity we provide a short and efficient implementation of the algorithm in Python. Our second solution is a deterministic algorithm running in time $O(m\ \mathrm{polylog}\ m)$, that uses dynamic data structures for string manipulation. We further show that the techniques developed in this work can also lead to simple algorithms for the All Pairs Non-Decreasing Paths Problem (APNP) on undirected graphs, matching the asymptotically optimal running time of $\tilde{O}(n^2)$ provided in the recent work of Duan et al. (ICALP'19). %K Computer Science, Data Structures and Algorithms, cs.DS
[12]
R. Becker, Y. Emek, and C. Lenzen, “Low Diameter Graph Decompositions by Approximate Distance Computation,” in 11th Innovations in Theoretical Computer Science Conference (ITICS 2020), Seattle, WA, USA, 2020.
Export
BibTeX
@inproceedings{Becker_ITCS2020, TITLE = {Low Diameter Graph Decompositions by Approximate Distance Computation}, AUTHOR = {Becker, Ruben and Emek, Yuval and Lenzen, Christoph}, LANGUAGE = {eng}, ISSN = {1868-8969}, ISBN = {978-3-95977-134-4}, URL = {urn:nbn:de:0030-drops-117355}, DOI = {10.4230/LIPIcs.ITCS.2020.50}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {11th Innovations in Theoretical Computer Science Conference (ITICS 2020)}, EDITOR = {Vidick, Thomas}, EID = {50}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {151}, ADDRESS = {Seattle, WA, USA}, }
Endnote
%0 Conference Proceedings %A Becker, Ruben %A Emek, Yuval %A Lenzen, Christoph %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Low Diameter Graph Decompositions by Approximate Distance Computation : %G eng %U http://hdl.handle.net/21.11116/0000-0005-A7A7-2 %R 10.4230/LIPIcs.ITCS.2020.50 %U urn:nbn:de:0030-drops-117355 %D 2020 %B 11th Innovations in Theoretical Computer Science Conference %Z date of event: 2020-01-12 - 2020-01-14 %C Seattle, WA, USA %B 11th Innovations in Theoretical Computer Science Conference %E Vidick, Thomas %Z sequence number: 50 %I Schloss Dagstuhl %@ 978-3-95977-134-4 %B Leibniz International Proceedings in Informatics %N 151 %@ false %U https://drops.dagstuhl.de/opus/volltexte/2020/11735/https://drops.dagstuhl.de/doku/urheberrecht1.html
[13]
D. Bilò, L. Gualà, S. Leucci, and G. Proietti, “Tracking Routes in Communication Networks,” Theoretical Computer Science, vol. 844, 2020.
Export
BibTeX
@article{Bilo_2020, TITLE = {Tracking Routes in Communication Networks}, AUTHOR = {Bil{\`o}, Davide and Gual{\`a}, Luciano and Leucci, Stefano and Proietti, Guido}, LANGUAGE = {eng}, ISSN = {0304-3975}, DOI = {10.1016/j.tcs.2020.07.012}, PUBLISHER = {Elsevier}, ADDRESS = {Amsterdam}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {Theoretical Computer Science}, VOLUME = {844}, PAGES = {1--15}, }
Endnote
%0 Journal Article %A Bilò, Davide %A Gualà, Luciano %A Leucci, Stefano %A Proietti, Guido %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Tracking Routes in Communication Networks : %G eng %U http://hdl.handle.net/21.11116/0000-0007-72EF-C %R 10.1016/j.tcs.2020.07.012 %7 2020 %D 2020 %J Theoretical Computer Science %V 844 %& 1 %P 1 - 15 %I Elsevier %C Amsterdam %@ false
[14]
V. Bonifaci, E. Facca, F. Folz, A. Karrenbauer, P. Kolev, K. Mehlhorn, G. Morigi, G. Shahkarami, and Q. Vermande, “Physarum Multi-Commodity Flow Dynamics,” 2020. [Online]. Available: https://arxiv.org/abs/2009.01498. (arXiv: 2009.01498)
Abstract
In wet-lab experiments \cite{Nakagaki-Yamada-Toth,Tero-Takagi-etal}, the slime mold Physarum polycephalum has demonstrated its ability to solve shortest path problems and to design efficient networks, see Figure \ref{Wet-Lab Experiments} for illustrations. Physarum polycephalum is a slime mold in the Mycetozoa group. For the shortest path problem, a mathematical model for the evolution of the slime was proposed in \cite{Tero-Kobayashi-Nakagaki} and its biological relevance was argued. The model was shown to solve shortest path problems, first in computer simulations and then by mathematical proof. It was later shown that the slime mold dynamics can solve more general linear programs and that many variants of the dynamics have similar convergence behavior. In this paper, we introduce a dynamics for the network design problem. We formulate network design as the problem of constructing a network that efficiently supports a multi-commodity flow problem. We investigate the dynamics in computer simulations and analytically. The simulations show that the dynamics is able to construct efficient and elegant networks. In the theoretical part we show that the dynamics minimizes an objective combining the cost of the network and the cost of routing the demands through the network. We also give alternative characterization of the optimum solution.
Export
BibTeX
@online{Bonifaci_arXiv2009.01498, TITLE = {Physarum Multi-Commodity Flow Dynamics}, AUTHOR = {Bonifaci, Vincenzo and Facca, Enrico and Folz, Frederic and Karrenbauer, Andreas and Kolev, Pavel and Mehlhorn, Kurt and Morigi, Giovanna and Shahkarami, Golnoosh and Vermande, Quentin}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2009.01498}, EPRINT = {2009.01498}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {In wet-lab experiments \cite{Nakagaki-Yamada-Toth,Tero-Takagi-etal}, the slime mold Physarum polycephalum has demonstrated its ability to solve shortest path problems and to design efficient networks, see Figure \ref{Wet-Lab Experiments} for illustrations. Physarum polycephalum is a slime mold in the Mycetozoa group. For the shortest path problem, a mathematical model for the evolution of the slime was proposed in \cite{Tero-Kobayashi-Nakagaki} and its biological relevance was argued. The model was shown to solve shortest path problems, first in computer simulations and then by mathematical proof. It was later shown that the slime mold dynamics can solve more general linear programs and that many variants of the dynamics have similar convergence behavior. In this paper, we introduce a dynamics for the network design problem. We formulate network design as the problem of constructing a network that efficiently supports a multi-commodity flow problem. We investigate the dynamics in computer simulations and analytically. The simulations show that the dynamics is able to construct efficient and elegant networks. In the theoretical part we show that the dynamics minimizes an objective combining the cost of the network and the cost of routing the demands through the network. We also give alternative characterization of the optimum solution.}, }
Endnote
%0 Report %A Bonifaci, Vincenzo %A Facca, Enrico %A Folz, Frederic %A Karrenbauer, Andreas %A Kolev, Pavel %A Mehlhorn, Kurt %A Morigi, Giovanna %A Shahkarami, Golnoosh %A Vermande, Quentin %+ External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Physarum Multi-Commodity Flow Dynamics : %G eng %U http://hdl.handle.net/21.11116/0000-0007-2312-D %U https://arxiv.org/abs/2009.01498 %D 2020 %X In wet-lab experiments \cite{Nakagaki-Yamada-Toth,Tero-Takagi-etal}, the slime mold Physarum polycephalum has demonstrated its ability to solve shortest path problems and to design efficient networks, see Figure \ref{Wet-Lab Experiments} for illustrations. Physarum polycephalum is a slime mold in the Mycetozoa group. For the shortest path problem, a mathematical model for the evolution of the slime was proposed in \cite{Tero-Kobayashi-Nakagaki} and its biological relevance was argued. The model was shown to solve shortest path problems, first in computer simulations and then by mathematical proof. It was later shown that the slime mold dynamics can solve more general linear programs and that many variants of the dynamics have similar convergence behavior. In this paper, we introduce a dynamics for the network design problem. We formulate network design as the problem of constructing a network that efficiently supports a multi-commodity flow problem. We investigate the dynamics in computer simulations and analytically. The simulations show that the dynamics is able to construct efficient and elegant networks. In the theoretical part we show that the dynamics minimizes an objective combining the cost of the network and the cost of routing the demands through the network. We also give alternative characterization of the optimum solution. %K Computer Science, Data Structures and Algorithms, cs.DS,Computer Science, Neural and Evolutionary Computing, cs.NE
[15]
K. Bringmann, T. Husfeldt, and M. Magnusson, “Multivariate Analysis of Orthogonal Range Searching and Graph Distances Parameterized by Treewidth,” Algorithmica, vol. 82, no. 8, 2020.
Export
BibTeX
@article{Bringmann_2020a, TITLE = {Multivariate Analysis of Orthogonal Range Searching and Graph Distances Parameterized by Treewidth}, AUTHOR = {Bringmann, Karl and Husfeldt, Thore and Magnusson, M{\aa}ns}, LANGUAGE = {eng}, ISSN = {0178-4617}, DOI = {10.1007/s00453-020-00680-z}, PUBLISHER = {Springer}, ADDRESS = {New York}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {Algorithmica}, VOLUME = {82}, NUMBER = {8}, PAGES = {2292--2315}, }
Endnote
%0 Journal Article %A Bringmann, Karl %A Husfeldt, Thore %A Magnusson, Måns %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations %T Multivariate Analysis of Orthogonal Range Searching and Graph Distances Parameterized by Treewidth : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F289-E %R 10.1007/s00453-020-00680-z %7 2020 %D 2020 %J Algorithmica %V 82 %N 8 %& 2292 %P 2292 - 2315 %I Springer %C New York %@ false
[16]
K. Bringmann, P. Gawrychowski, S. Mozes, and O. Weimann, “Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can),” ACM Transactions on Algorithms, vol. 16, no. 4, 2020.
Export
BibTeX
@article{Bringmann_ToA2020, TITLE = {Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless {APSP} can)}, AUTHOR = {Bringmann, Karl and Gawrychowski, Pawe{\l} and Mozes, Shay and Weimann, Oren}, LANGUAGE = {eng}, ISSN = {1549-6325}, DOI = {10.1145/3381878}, PUBLISHER = {ACM}, ADDRESS = {New York, NY}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, JOURNAL = {ACM Transactions on Algorithms}, VOLUME = {16}, NUMBER = {4}, EID = {48}, }
Endnote
%0 Journal Article %A Bringmann, Karl %A Gawrychowski, Paweł %A Mozes, Shay %A Weimann, Oren %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations External Organizations %T Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can) : %G eng %U http://hdl.handle.net/21.11116/0000-0007-2502-D %R 10.1145/3381878 %7 2020 %D 2020 %J ACM Transactions on Algorithms %V 16 %N 4 %Z sequence number: 48 %I ACM %C New York, NY %@ false
[17]
K. Bringmann, M. Künnemann, and A. Nusser, “When Lipschitz Walks Your Dog: Algorithm Engineering of the Discrete Fréchet Distance Under Translation,” in 28th Annual European Symposium on Algorithms (ESA 2020), Pisa, Italy (Virtual Conference), 2020.
Export
BibTeX
@inproceedings{Bringmann_ESA2020, TITLE = {When {L}ipschitz Walks Your Dog: {A}lgorithm Engineering of the Discrete {F}r\'{e}chet Distance Under Translation}, AUTHOR = {Bringmann, Karl and K{\"u}nnemann, Marvin and Nusser, Andr{\'e}}, LANGUAGE = {eng}, ISSN = {1868-8969}, ISBN = {978-3-95977-162-7}, URL = {urn:nbn:de:0030-drops-128912}, DOI = {10.4230/LIPIcs.ESA.2020.25}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {28th Annual European Symposium on Algorithms (ESA 2020)}, EDITOR = {Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter}, EID = {25}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {173}, ADDRESS = {Pisa, Italy (Virtual Conference)}, }
Endnote
%0 Conference Proceedings %A Bringmann, Karl %A Künnemann, Marvin %A Nusser, André %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T When Lipschitz Walks Your Dog: Algorithm Engineering of the Discrete Fréchet Distance Under Translation : %G eng %U http://hdl.handle.net/21.11116/0000-0007-2791-9 %R 10.4230/LIPIcs.ESA.2020.25 %U urn:nbn:de:0030-drops-128912 %D 2020 %B 28th Annual European Symposium on Algorithms %Z date of event: 2020-09-07 - 2020-09-09 %C Pisa, Italy (Virtual Conference) %B 28th Annual European Symposium on Algorithms %E Grandoni, Fabrizio; Herman, Grzegorz; Sanders, Peter %Z sequence number: 25 %I Schloss Dagstuhl %@ 978-3-95977-162-7 %B Leibniz International Proceedings in Informatics %N 173 %@ false %U https://drops.dagstuhl.de/opus/volltexte/2020/12891/https://creativecommons.org/licenses/by/3.0/legalcodehttps://gitlab.com/anusser/frechet_distance_under_translation
[18]
K. Bringmann, N. Fischer, D. Hermelin, D. Shabtay, and P. Wellnitz, “Faster Minimization of Tardy Processing Time on a Single Machine,” 2020. [Online]. Available: https://arxiv.org/abs/2003.07104. (arXiv: 2003.07104)
Abstract
This paper is concerned with the $1||\sum p_jU_j$ problem, the problem of minimizing the total processing time of tardy jobs on a single machine. This is not only a fundamental scheduling problem, but also a very important problem from a theoretical point of view as it generalizes the Subset Sum problem and is closely related to the 0/1-Knapsack problem. The problem is well-known to be NP-hard, but only in a weak sense, meaning it admits pseudo-polynomial time algorithms. The fastest known pseudo-polynomial time algorithm for the problem is the famous Lawler and Moore algorithm which runs in $O(P \cdot n)$ time, where $P$ is the total processing time of all $n$ jobs in the input. This algorithm has been developed in the late 60s, and has yet to be improved to date. In this paper we develop two new algorithms for $1||\sum p_jU_j$, each improving on Lawler and Moore's algorithm in a different scenario. Both algorithms rely on basic primitive operations between sets of integers and vectors of integers for the speedup in their running times. The second algorithm relies on fast polynomial multiplication as its main engine, while for the first algorithm we define a new "skewed" version of $(\max,\min)$-convolution which is interesting in its own right.
Export
BibTeX
@online{Bringmann_arXiv2003.07104, TITLE = {Faster Minimization of Tardy Processing Time on a Single Machine}, AUTHOR = {Bringmann, Karl and Fischer, Nick and Hermelin, Danny and Shabtay, Dvir and Wellnitz, Philip}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2003.07104}, EPRINT = {2003.07104}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {This paper is concerned with the $1||\sum p_jU_j$ problem, the problem of minimizing the total processing time of tardy jobs on a single machine. This is not only a fundamental scheduling problem, but also a very important problem from a theoretical point of view as it generalizes the Subset Sum problem and is closely related to the 0/1-Knapsack problem. The problem is well-known to be NP-hard, but only in a weak sense, meaning it admits pseudo-polynomial time algorithms. The fastest known pseudo-polynomial time algorithm for the problem is the famous Lawler and Moore algorithm which runs in $O(P \cdot n)$ time, where $P$ is the total processing time of all $n$ jobs in the input. This algorithm has been developed in the late 60s, and has yet to be improved to date. In this paper we develop two new algorithms for $1||\sum p_jU_j$, each improving on Lawler and Moore's algorithm in a different scenario. Both algorithms rely on basic primitive operations between sets of integers and vectors of integers for the speedup in their running times. The second algorithm relies on fast polynomial multiplication as its main engine, while for the first algorithm we define a new "skewed" version of $(\max,\min)$-convolution which is interesting in its own right.}, }
Endnote
%0 Report %A Bringmann, Karl %A Fischer, Nick %A Hermelin, Danny %A Shabtay, Dvir %A Wellnitz, Philip %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Faster Minimization of Tardy Processing Time on a Single Machine : %G eng %U http://hdl.handle.net/21.11116/0000-0007-2A4E-4 %U https://arxiv.org/abs/2003.07104 %D 2020 %X This paper is concerned with the $1||\sum p_jU_j$ problem, the problem of minimizing the total processing time of tardy jobs on a single machine. This is not only a fundamental scheduling problem, but also a very important problem from a theoretical point of view as it generalizes the Subset Sum problem and is closely related to the 0/1-Knapsack problem. The problem is well-known to be NP-hard, but only in a weak sense, meaning it admits pseudo-polynomial time algorithms. The fastest known pseudo-polynomial time algorithm for the problem is the famous Lawler and Moore algorithm which runs in $O(P \cdot n)$ time, where $P$ is the total processing time of all $n$ jobs in the input. This algorithm has been developed in the late 60s, and has yet to be improved to date. In this paper we develop two new algorithms for $1||\sum p_jU_j$, each improving on Lawler and Moore's algorithm in a different scenario. Both algorithms rely on basic primitive operations between sets of integers and vectors of integers for the speedup in their running times. The second algorithm relies on fast polynomial multiplication as its main engine, while for the first algorithm we define a new "skewed" version of $(\max,\min)$-convolution which is interesting in its own right. %K Computer Science, Data Structures and Algorithms, cs.DS
[19]
K. Bringmann, N. Fischer, D. Hermelin, D. Shabtay, and P. Wellnitz, “Faster Minimization of Tardy Processing Time on a Single Machine,” in 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), Saarbrücken, Germany (Virtual Conference), 2020.
Export
BibTeX
@inproceedings{Bringmann_ICALP2020, TITLE = {Faster Minimization of Tardy Processing Time on a Single Machine}, AUTHOR = {Bringmann, Karl and Fischer, Nick and Hermelin, Danny and Shabtay, Dvir and Wellnitz, Philip}, LANGUAGE = {eng}, ISSN = {1868-8969}, ISBN = {978-3-95977-138-2}, URL = {urn:nbn:de:0030-drops-124269}, DOI = {10.4230/LIPIcs.ICALP.2020.19}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, EDITOR = {Czumaj, Artur and Dawa, Anuj and Merelli, Emanuela}, EID = {19}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {168}, ADDRESS = {Saarbr{\"u}cken, Germany (Virtual Conference)}, }
Endnote
%0 Conference Proceedings %A Bringmann, Karl %A Fischer, Nick %A Hermelin, Danny %A Shabtay, Dvir %A Wellnitz, Philip %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Faster Minimization of Tardy Processing Time on a Single Machine : %G eng %U http://hdl.handle.net/21.11116/0000-0007-287E-0 %R 10.4230/LIPIcs.ICALP.2020.19 %U urn:nbn:de:0030-drops-124269 %D 2020 %B 47th International Colloquium on Automata, Languages, and Programming %Z date of event: 2020-07-08 - 2020-07-11 %C Saarbrücken, Germany (Virtual Conference) %B 47th International Colloquium on Automata, Languages, and Programming %E Czumaj, Artur; Dawa, Anuj; Merelli, Emanuela %Z sequence number: 19 %I Schloss Dagstuhl %@ 978-3-95977-138-2 %B Leibniz International Proceedings in Informatics %N 168 %@ false %U https://drops.dagstuhl.de/opus/volltexte/2020/12426/https://creativecommons.org/licenses/by/3.0/legalcode
[20]
K. Bringmann and V. Nakos, “Top-k-convolution and the Quest for Near-linear Output-sensitive Subset Sum,” in STOC ’20, Chicago, IL, USA, 2020.
Export
BibTeX
@inproceedings{Bringmann_STOC2020, TITLE = {Top-$k$-convolution and the Quest for Near-linear Output-sensitive Subset Sum}, AUTHOR = {Bringmann, Karl and Nakos, Vasileios}, LANGUAGE = {eng}, ISBN = {978-1-4503-6979-4}, DOI = {10.1145/3357713.3384308}, PUBLISHER = {ACM}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {STOC '20}, EDITOR = {Makarychev, Konstantin and Makarychev, Yury and Tulsiani, Madhur and Kamath, Gautam and Chuzhoy, Julia}, PAGES = {982--995}, ADDRESS = {Chicago, IL, USA}, }
Endnote
%0 Conference Proceedings %A Bringmann, Karl %A Nakos, Vasileios %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Top-k-convolution and the Quest for Near-linear Output-sensitive Subset Sum : %G eng %U http://hdl.handle.net/21.11116/0000-0007-299D-B %R 10.1145/3357713.3384308 %D 2020 %B 52nd Annual ACM SIGACT Symposium on Theory of Computing %Z date of event: 2020-06-22 - 2020-06-26 %C Chicago, IL, USA %B STOC '20 %E Makarychev, Konstantin; Makarychev, Yury; Tulsiani, Madhur; Kamath, Gautam; Chuzhoy, Julia %P 982 - 995 %I ACM %@ 978-1-4503-6979-4
[21]
K. Bringmann, M. Künnemann, and A. Nusser, “When Lipschitz Walks Your Dog: Algorithm Engineering of the Discrete Fréchet Distance under Translation,” 2020. [Online]. Available: https://arxiv.org/abs/2008.07510. (arXiv: 2008.07510)
Abstract
Consider the natural question of how to measure the similarity of curves in the plane by a quantity that is invariant under translations of the curves. Such a measure is justified whenever we aim to quantify the similarity of the curves' shapes rather than their positioning in the plane, e.g., to compare the similarity of handwritten characters. Perhaps the most natural such notion is the (discrete) Fr\'echet distance under translation. Unfortunately, the algorithmic literature on this problem yields a very pessimistic view: On polygonal curves with $n$ vertices, the fastest algorithm runs in time $O(n^{4.667})$ and cannot be improved below $n^{4-o(1)}$ unless the Strong Exponential Time Hypothesis fails. Can we still obtain an implementation that is efficient on realistic datasets? Spurred by the surprising performance of recent implementations for the Fr\'echet distance, we perform algorithm engineering for the Fr\'echet distance under translation. Our solution combines fast, but inexact tools from continuous optimization (specifically, branch-and-bound algorithms for global Lipschitz optimization) with exact, but expensive algorithms from computational geometry (specifically, problem-specific algorithms based on an arrangement construction). We combine these two ingredients to obtain an exact decision algorithm for the Fr\'echet distance under translation. For the related task of computing the distance value up to a desired precision, we engineer and compare different methods. On a benchmark set involving handwritten characters and route trajectories, our implementation answers a typical query for either task in the range of a few milliseconds up to a second on standard desktop hardware. We believe that our implementation will enable the use of the Fr\'echet distance under translation in applications, whereas previous approaches would have been computationally infeasible.
Export
BibTeX
@online{Bringmann_arXiv2008.07510, TITLE = {When {L}ipschitz Walks Your Dog: {A}lgorithm Engineering of the Discrete {F}r\'{e}chet Distance Under Translation}, AUTHOR = {Bringmann, Karl and K{\"u}nnemann, Marvin and Nusser, Andr{\'e}}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2008.07510}, EPRINT = {2008.07510}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {Consider the natural question of how to measure the similarity of curves in the plane by a quantity that is invariant under translations of the curves. Such a measure is justified whenever we aim to quantify the similarity of the curves' shapes rather than their positioning in the plane, e.g., to compare the similarity of handwritten characters. Perhaps the most natural such notion is the (discrete) Fr\'echet distance under translation. Unfortunately, the algorithmic literature on this problem yields a very pessimistic view: On polygonal curves with $n$ vertices, the fastest algorithm runs in time $O(n^{4.667})$ and cannot be improved below $n^{4-o(1)}$ unless the Strong Exponential Time Hypothesis fails. Can we still obtain an implementation that is efficient on realistic datasets? Spurred by the surprising performance of recent implementations for the Fr\'echet distance, we perform algorithm engineering for the Fr\'echet distance under translation. Our solution combines fast, but inexact tools from continuous optimization (specifically, branch-and-bound algorithms for global Lipschitz optimization) with exact, but expensive algorithms from computational geometry (specifically, problem-specific algorithms based on an arrangement construction). We combine these two ingredients to obtain an exact decision algorithm for the Fr\'echet distance under translation. For the related task of computing the distance value up to a desired precision, we engineer and compare different methods. On a benchmark set involving handwritten characters and route trajectories, our implementation answers a typical query for either task in the range of a few milliseconds up to a second on standard desktop hardware. We believe that our implementation will enable the use of the Fr\'echet distance under translation in applications, whereas previous approaches would have been computationally infeasible.}, }
Endnote
%0 Report %A Bringmann, Karl %A Künnemann, Marvin %A Nusser, André %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T When Lipschitz Walks Your Dog: Algorithm Engineering of the Discrete Fréchet Distance under Translation : %G eng %U http://hdl.handle.net/21.11116/0000-0007-2A56-A %U https://arxiv.org/abs/2008.07510 %D 2020 %X Consider the natural question of how to measure the similarity of curves in the plane by a quantity that is invariant under translations of the curves. Such a measure is justified whenever we aim to quantify the similarity of the curves' shapes rather than their positioning in the plane, e.g., to compare the similarity of handwritten characters. Perhaps the most natural such notion is the (discrete) Fr\'echet distance under translation. Unfortunately, the algorithmic literature on this problem yields a very pessimistic view: On polygonal curves with $n$ vertices, the fastest algorithm runs in time $O(n^{4.667})$ and cannot be improved below $n^{4-o(1)}$ unless the Strong Exponential Time Hypothesis fails. Can we still obtain an implementation that is efficient on realistic datasets? Spurred by the surprising performance of recent implementations for the Fr\'echet distance, we perform algorithm engineering for the Fr\'echet distance under translation. Our solution combines fast, but inexact tools from continuous optimization (specifically, branch-and-bound algorithms for global Lipschitz optimization) with exact, but expensive algorithms from computational geometry (specifically, problem-specific algorithms based on an arrangement construction). We combine these two ingredients to obtain an exact decision algorithm for the Fr\'echet distance under translation. For the related task of computing the distance value up to a desired precision, we engineer and compare different methods. On a benchmark set involving handwritten characters and route trajectories, our implementation answers a typical query for either task in the range of a few milliseconds up to a second on standard desktop hardware. We believe that our implementation will enable the use of the Fr\'echet distance under translation in applications, whereas previous approaches would have been computationally infeasible. %K Computer Science, Computational Geometry, cs.CG,Computer Science, Data Structures and Algorithms, cs.DS
[22]
J. Bund, C. Lenzen, and M. Medina, “Optimal Metastability-Containing Sorting via Parallel Prefix Computation,” IEEE Transactions on Computers, vol. 69, no. 2, 2020.
Export
BibTeX
@article{Bund_IEEETOC2020, TITLE = {Optimal Metastability-Containing Sorting via Parallel Prefix Computation}, AUTHOR = {Bund, Johannes and Lenzen, Christoph and Medina, Moti}, LANGUAGE = {eng}, ISSN = {0018-9340}, DOI = {10.1109/TC.2019.2939818}, PUBLISHER = {IEEE}, ADDRESS = {Piscataway, NJ}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {IEEE Transactions on Computers}, VOLUME = {69}, NUMBER = {2}, PAGES = {198--211}, }
Endnote
%0 Journal Article %A Bund, Johannes %A Lenzen, Christoph %A Medina, Moti %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Optimal Metastability-Containing Sorting via Parallel Prefix Computation : %G eng %U http://hdl.handle.net/21.11116/0000-0005-9E7F-C %R 10.1109/TC.2019.2939818 %7 2020 %D 2020 %J IEEE Transactions on Computers %V 69 %N 2 %& 198 %P 198 - 211 %I IEEE %C Piscataway, NJ %@ false
[23]
J. Bund, M. Fugger, C. Lenzen, and M. Medina, “Synchronizer-Free Digital Link Controller,” IEEE Transactions on Circuits and Systems / I, Regular Papers, vol. 27, no. 10, 2020.
Export
BibTeX
@article{Bund2020, TITLE = {Synchronizer-Free Digital Link Controller}, AUTHOR = {Bund, Johannes and Fugger, Matthias and Lenzen, Christoph and Medina, Moti}, LANGUAGE = {eng}, ISSN = {1057-7122}, DOI = {10.1109/TCSI.2020.2989552}, PUBLISHER = {Institute of Electrical and Electronics Engineers}, ADDRESS = {Piscataway, NJ}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {IEEE Transactions on Circuits and Systems / I, Regular Papers}, VOLUME = {27}, NUMBER = {10}, PAGES = {3562--3573}, }
Endnote
%0 Journal Article %A Bund, Johannes %A Fugger, Matthias %A Lenzen, Christoph %A Medina, Moti %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Synchronizer-Free Digital Link Controller : %G eng %U http://hdl.handle.net/21.11116/0000-0007-35FE-0 %R 10.1109/TCSI.2020.2989552 %7 2020 %D 2020 %J IEEE Transactions on Circuits and Systems / I, Regular Papers %V 27 %N 10 %& 3562 %P 3562 - 3573 %I Institute of Electrical and Electronics Engineers %C Piscataway, NJ %@ false
[24]
J. Bund, M. Függer, C. Lenzen, M. Medina, and W. Rosenbaum, “PALS: Plesiochronous and Locally Synchronous Systems,” in 26th IEEE International Symposium on Asynchronous Circuits and Systems, Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{Bund_ASYNC2020, TITLE = {{PALS}: {P}lesiochronous and Locally Synchronous Systems}, AUTHOR = {Bund, Johannes and F{\"u}gger, Matthias and Lenzen, Christoph and Medina, Moti and Rosenbaum, Will}, LANGUAGE = {eng}, ISBN = {978-1-7281-5495-4}, DOI = {10.1109/ASYNC49171.2020.00013}, PUBLISHER = {IEEE}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {26th IEEE International Symposium on Asynchronous Circuits and Systems}, PAGES = {36--43}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Bund, Johannes %A Függer, Matthias %A Lenzen, Christoph %A Medina, Moti %A Rosenbaum, Will %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T PALS: Plesiochronous and Locally Synchronous Systems : %G eng %U http://hdl.handle.net/21.11116/0000-0007-46B8-B %R 10.1109/ASYNC49171.2020.00013 %D 2020 %B 26th IEEE International Symposium on Asynchronous Circuits and Systems %Z date of event: 2020-05-17 - 2020-05-20 %C Salt Lake City, UT, USA %B 26th IEEE International Symposium on Asynchronous Circuits and Systems %P 36 - 43 %I IEEE %@ 978-1-7281-5495-4
[25]
J. Bund, M. Függer, C. Lenzen, M. Medina, and W. Rosenbaum, “PALS: Plesiochronous and Locally Synchronous Systems,” 2020. [Online]. Available: https://arxiv.org/abs/2003.05542. (arXiv: 2003.05542)
Abstract
Consider an arbitrary network of communicating modules on a chip, each requiring a local signal telling it when to execute a computational step. There are three common solutions to generating such a local clock signal: (i) by deriving it from a single, central clock source, (ii) by local, free-running oscillators, or (iii) by handshaking between neighboring modules. Conceptually, each of these solutions is the result of a perceived dichotomy in which (sub)systems are either clocked or fully asynchronous, suggesting that the designer's choice is limited to deciding where to draw the line between synchronous and asynchronous design. In contrast, we take the view that the better question to ask is how synchronous the system can and should be. Based on a distributed clock synchronization algorithm, we present a novel design providing modules with local clocks whose frequency bounds are almost as good as those of corresponding free-running oscillators, yet neighboring modules are guaranteed to have a phase offset substantially smaller than one clock cycle. Concretely, parameters obtained from a 15nm ASIC implementation running at 2GHz yield mathematical worst-case bounds of 30ps on phase offset for a 32x32 node grid network.
Export
BibTeX
@online{Bund_arXiv2003.05542, TITLE = {{PALS}: Plesiochronous and Locally Synchronous Systems}, AUTHOR = {Bund, Johannes and F{\"u}gger, Matthias and Lenzen, Christoph and Medina, Moti and Rosenbaum, Will}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2003.05542}, EPRINT = {2003.05542}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {Consider an arbitrary network of communicating modules on a chip, each requiring a local signal telling it when to execute a computational step. There are three common solutions to generating such a local clock signal: (i) by deriving it from a single, central clock source, (ii) by local, free-running oscillators, or (iii) by handshaking between neighboring modules. Conceptually, each of these solutions is the result of a perceived dichotomy in which (sub)systems are either clocked or fully asynchronous, suggesting that the designer's choice is limited to deciding where to draw the line between synchronous and asynchronous design. In contrast, we take the view that the better question to ask is how synchronous the system can and should be. Based on a distributed clock synchronization algorithm, we present a novel design providing modules with local clocks whose frequency bounds are almost as good as those of corresponding free-running oscillators, yet neighboring modules are guaranteed to have a phase offset substantially smaller than one clock cycle. Concretely, parameters obtained from a 15nm ASIC implementation running at 2GHz yield mathematical worst-case bounds of 30ps on phase offset for a 32x32 node grid network.}, }
Endnote
%0 Report %A Bund, Johannes %A Függer, Matthias %A Lenzen, Christoph %A Medina, Moti %A Rosenbaum, Will %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T PALS: Plesiochronous and Locally Synchronous Systems : %G eng %U http://hdl.handle.net/21.11116/0000-0007-475C-3 %U https://arxiv.org/abs/2003.05542 %D 2020 %X Consider an arbitrary network of communicating modules on a chip, each requiring a local signal telling it when to execute a computational step. There are three common solutions to generating such a local clock signal: (i) by deriving it from a single, central clock source, (ii) by local, free-running oscillators, or (iii) by handshaking between neighboring modules. Conceptually, each of these solutions is the result of a perceived dichotomy in which (sub)systems are either clocked or fully asynchronous, suggesting that the designer's choice is limited to deciding where to draw the line between synchronous and asynchronous design. In contrast, we take the view that the better question to ask is how synchronous the system can and should be. Based on a distributed clock synchronization algorithm, we present a novel design providing modules with local clocks whose frequency bounds are almost as good as those of corresponding free-running oscillators, yet neighboring modules are guaranteed to have a phase offset substantially smaller than one clock cycle. Concretely, parameters obtained from a 15nm ASIC implementation running at 2GHz yield mathematical worst-case bounds of 30ps on phase offset for a 32x32 node grid network. %K Computer Science, Distributed, Parallel, and Cluster Computing, cs.DC
[26]
P. Chalermsook, M. Cygan, G. Kortsarz, B. Laekhanukit, P. Manurangsi, D. Nanongkai, and L. Trevisan, “From Gap-Exponential Time Hypothesis to Fixed Parameter Tractable Inapproximability: Clique, Dominating Set, and More,” SIAM Journal on Computing, vol. 49, no. 4, 2020.
Export
BibTeX
@article{Chalermsook2020, TITLE = {From Gap-Exponential Time Hypothesis to Fixed Parameter Tractable Inapproximability: {C}lique, Dominating Set, and More}, AUTHOR = {Chalermsook, Parinya and Cygan, Marek and Kortsarz, Guy and Laekhanukit, Bundit and Manurangsi, Pasin and Nanongkai, Danupon and Trevisan, Luca}, LANGUAGE = {eng}, ISSN = {0097-5397}, DOI = {10.1137/18M1166869}, PUBLISHER = {SIAM}, ADDRESS = {Philadelphia, PA}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, JOURNAL = {SIAM Journal on Computing}, VOLUME = {49}, NUMBER = {4}, PAGES = {772--810}, }
Endnote
%0 Journal Article %A Chalermsook, Parinya %A Cygan, Marek %A Kortsarz, Guy %A Laekhanukit, Bundit %A Manurangsi, Pasin %A Nanongkai, Danupon %A Trevisan, Luca %+ External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations External Organizations %T From Gap-Exponential Time Hypothesis to Fixed Parameter Tractable Inapproximability: Clique, Dominating Set, and More : %G eng %U http://hdl.handle.net/21.11116/0000-0007-1D05-4 %R 10.1137/18M1166869 %7 2020 %D 2020 %J SIAM Journal on Computing %V 49 %N 4 %& 772 %P 772 - 810 %I SIAM %C Philadelphia, PA %@ false
[27]
M. Cheraghchi and V. Nakos, “Combinatorial Group Testing and Sparse Recovery Schemes with Near-Optimal Decoding Time,” in FOCS 2020, Durham, NC, USA (Virtual Conference). (Accepted/in press)
Export
BibTeX
@inproceedings{Cheraghchi_FOCS2020, TITLE = {Combinatorial Group Testing and Sparse Recovery Schemes with Near-Optimal Decoding Time}, AUTHOR = {Cheraghchi, Mahdi and Nakos, Vasileios}, LANGUAGE = {eng}, PUBLISHER = {IEEE}, YEAR = {2020}, PUBLREMARK = {Accepted}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {FOCS 2020}, ADDRESS = {Durham, NC, USA (Virtual Conference)}, }
Endnote
%0 Conference Proceedings %A Cheraghchi, Mahdi %A Nakos, Vasileios %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Combinatorial Group Testing and Sparse Recovery Schemes with Near-Optimal Decoding Time : %G eng %U http://hdl.handle.net/21.11116/0000-0007-56C6-9 %D 2020 %B 61st Annual IEEE Symposium on Foundations of Computer Science %Z date of event: 2020-11-16 - 2020-11-19 %C Durham, NC, USA (Virtual Conference) %B FOCS 2020 %I IEEE
[28]
R. H. Chitnis, A. E. Feldmann, M. HajiAghayi, and D. Marx, “Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and Extensions),” SIAM Journal on Computing, vol. 49, no. 2, 2020.
Export
BibTeX
@article{Chitnis2020, TITLE = {Tight Bounds for Planar Strongly Connected {Steiner} Subgraph with Fixed Number of Terminals (and Extensions)}, AUTHOR = {Chitnis, Rajesh H. and Feldmann, Andreas E. and HajiAghayi, MohammadTaghi and Marx, Daniel}, LANGUAGE = {eng}, ISSN = {0097-5397}, DOI = {10.1137/18M122371X}, PUBLISHER = {Society for Industrial and Applied Mathematics.}, ADDRESS = {Philadelphia}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {SIAM Journal on Computing}, VOLUME = {49}, NUMBER = {2}, PAGES = {318--364}, }
Endnote
%0 Journal Article %A Chitnis, Rajesh H. %A Feldmann, Andreas E. %A HajiAghayi, MohammadTaghi %A Marx, Daniel %+ External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and Extensions) : %G eng %U http://hdl.handle.net/21.11116/0000-0006-E002-A %R 10.1137/18M122371X %7 2020 %D 2020 %J SIAM Journal on Computing %V 49 %N 2 %& 318 %P 318 - 364 %I Society for Industrial and Applied Mathematics. %C Philadelphia %@ false
[29]
V. Cohen-Addad, P. N. Klein, and D. Marx, “On the Computational Tractability of a Geographic Clustering Problem Arising in Redistricting,” 2020. [Online]. Available: https://arxiv.org/abs/2009.00188. (arXiv: 2009.00188)
Abstract
Redistricting is the problem of dividing a state into a number $k$ of regions, called districts. Voters in each district elect a representative. The primary criteria are: each district is connected, district populations are equal (or nearly equal), and districts are "compact". There are multiple competing definitions of compactness, usually minimizing some quantity. One measure that has been recently promoted by Duchin and others is number of cut edges. In redistricting, one is given atomic regions out of which each district must be built. The populations of the atomic regions are given. Consider the graph with one vertex per atomic region (with weight equal to the region's population) and an edge between atomic regions that share a boundary. A districting plan is a partition of vertices into $k$ parts, each connnected, of nearly equal weight. The districts are considered compact to the extent that the plan minimizes the number of edges crossing between different parts. Consider two problems: find the most compact districting plan, and sample districting plans under a compactness constraint uniformly at random. Both problems are NP-hard so we restrict the input graph to have branchwidth at most $w$. (A planar graph's branchwidth is bounded by its diameter.) If both $k$ and $w$ are bounded by constants, the problems are solvable in polynomial time. Assume vertices have weight~1. One would like algorithms whose running times are of the form $O(f(k,w) n^c)$ for some constant $c$ independent of $k$ and $w$, in which case the problems are said to be fixed-parameter tractable with respect to $k$ and $w$). We show that, under a complexity-theoretic assumption, no such algorithms exist. However, we do give algorithms with running time $O(c^wn^{k+1})$. Thus if the diameter of the graph is moderately small and the number of districts is very small, our algorithm is useable.
Export
BibTeX
@online{Cohen-Addad_arXiv2009.00188, TITLE = {On the Computational Tractability of a Geographic Clustering Problem Arising in Redistricting}, AUTHOR = {Cohen-Addad, Vincent and Klein, Philip N. and Marx, D{\'a}niel}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2009.00188}, EPRINT = {2009.00188}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {Redistricting is the problem of dividing a state into a number $k$ of regions, called districts. Voters in each district elect a representative. The primary criteria are: each district is connected, district populations are equal (or nearly equal), and districts are "compact". There are multiple competing definitions of compactness, usually minimizing some quantity. One measure that has been recently promoted by Duchin and others is number of cut edges. In redistricting, one is given atomic regions out of which each district must be built. The populations of the atomic regions are given. Consider the graph with one vertex per atomic region (with weight equal to the region's population) and an edge between atomic regions that share a boundary. A districting plan is a partition of vertices into $k$ parts, each connnected, of nearly equal weight. The districts are considered compact to the extent that the plan minimizes the number of edges crossing between different parts. Consider two problems: find the most compact districting plan, and sample districting plans under a compactness constraint uniformly at random. Both problems are NP-hard so we restrict the input graph to have branchwidth at most $w$. (A planar graph's branchwidth is bounded by its diameter.) If both $k$ and $w$ are bounded by constants, the problems are solvable in polynomial time. Assume vertices have weight~1. One would like algorithms whose running times are of the form $O(f(k,w) n^c)$ for some constant $c$ independent of $k$ and $w$, in which case the problems are said to be fixed-parameter tractable with respect to $k$ and $w$). We show that, under a complexity-theoretic assumption, no such algorithms exist. However, we do give algorithms with running time $O(c^wn^{k+1})$. Thus if the diameter of the graph is moderately small and the number of districts is very small, our algorithm is useable.}, }
Endnote
%0 Report %A Cohen-Addad, Vincent %A Klein, Philip N. %A Marx, Dániel %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T On the Computational Tractability of a Geographic Clustering Problem Arising in Redistricting : %G eng %U http://hdl.handle.net/21.11116/0000-0007-495A-3 %U https://arxiv.org/abs/2009.00188 %D 2020 %X Redistricting is the problem of dividing a state into a number $k$ of regions, called districts. Voters in each district elect a representative. The primary criteria are: each district is connected, district populations are equal (or nearly equal), and districts are "compact". There are multiple competing definitions of compactness, usually minimizing some quantity. One measure that has been recently promoted by Duchin and others is number of cut edges. In redistricting, one is given atomic regions out of which each district must be built. The populations of the atomic regions are given. Consider the graph with one vertex per atomic region (with weight equal to the region's population) and an edge between atomic regions that share a boundary. A districting plan is a partition of vertices into $k$ parts, each connnected, of nearly equal weight. The districts are considered compact to the extent that the plan minimizes the number of edges crossing between different parts. Consider two problems: find the most compact districting plan, and sample districting plans under a compactness constraint uniformly at random. Both problems are NP-hard so we restrict the input graph to have branchwidth at most $w$. (A planar graph's branchwidth is bounded by its diameter.) If both $k$ and $w$ are bounded by constants, the problems are solvable in polynomial time. Assume vertices have weight~1. One would like algorithms whose running times are of the form $O(f(k,w) n^c)$ for some constant $c$ independent of $k$ and $w$, in which case the problems are said to be fixed-parameter tractable with respect to $k$ and $w$). We show that, under a complexity-theoretic assumption, no such algorithms exist. However, we do give algorithms with running time $O(c^wn^{k+1})$. Thus if the diameter of the graph is moderately small and the number of districts is very small, our algorithm is useable. %K Computer Science, Data Structures and Algorithms, cs.DS
[30]
C. Coupette and C. Lenzen, “A Breezing Proof of the KMW Bound,” 2020. [Online]. Available: https://arxiv.org/abs/2002.06005. (arXiv: 2002.06005)
Abstract
In their seminal paper from 2004, Kuhn, Moscibroda, and Wattenhofer (KMW) proved a hardness result for several fundamental graph problems in the LOCAL model: For any (randomized) algorithm, there are input graphs with $n$ nodes and maximum degree $\Delta$ on which $\Omega(\min\{\sqrt{\log n/\log \log n},\log \Delta/\log \log \Delta\})$ (expected) communication rounds are required to obtain polylogarithmic approximations to a minimum vertex cover, minimum dominating set, or maximum matching. Via reduction, this hardness extends to symmetry breaking tasks like finding maximal independent sets or maximal matchings. Today, more than $15$ years later, there is still no proof of this result that is easy on the reader. Setting out to change this, in this work, we provide a fully self-contained and $\mathit{simple}$ proof of the KMW lower bound. The key argument is algorithmic, and it relies on an invariant that can be readily verified from the generation rules of the lower bound graphs.
Export
BibTeX
@online{Coupette_arXiv2002.06005, TITLE = {A Breezing Proof of the {KMW} Bound}, AUTHOR = {Coupette, Corinna and Lenzen, Christoph}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2002.06005}, EPRINT = {2002.06005}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {In their seminal paper from 2004, Kuhn, Moscibroda, and Wattenhofer (KMW) proved a hardness result for several fundamental graph problems in the LOCAL model: For any (randomized) algorithm, there are input graphs with $n$ nodes and maximum degree $\Delta$ on which $\Omega(\min\{\sqrt{\log n/\log \log n},\log \Delta/\log \log \Delta\})$ (expected) communication rounds are required to obtain polylogarithmic approximations to a minimum vertex cover, minimum dominating set, or maximum matching. Via reduction, this hardness extends to symmetry breaking tasks like finding maximal independent sets or maximal matchings. Today, more than $15$ years later, there is still no proof of this result that is easy on the reader. Setting out to change this, in this work, we provide a fully self-contained and $\mathit{simple}$ proof of the KMW lower bound. The key argument is algorithmic, and it relies on an invariant that can be readily verified from the generation rules of the lower bound graphs.}, }
Endnote
%0 Report %A Coupette, Corinna %A Lenzen, Christoph %+ Internet Architecture, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T A Breezing Proof of the KMW Bound : %G eng %U http://hdl.handle.net/21.11116/0000-0007-46DC-3 %U https://arxiv.org/abs/2002.06005 %D 2020 %X In their seminal paper from 2004, Kuhn, Moscibroda, and Wattenhofer (KMW) proved a hardness result for several fundamental graph problems in the LOCAL model: For any (randomized) algorithm, there are input graphs with $n$ nodes and maximum degree $\Delta$ on which $\Omega(\min\{\sqrt{\log n/\log \log n},\log \Delta/\log \log \Delta\})$ (expected) communication rounds are required to obtain polylogarithmic approximations to a minimum vertex cover, minimum dominating set, or maximum matching. Via reduction, this hardness extends to symmetry breaking tasks like finding maximal independent sets or maximal matchings. Today, more than $15$ years later, there is still no proof of this result that is easy on the reader. Setting out to change this, in this work, we provide a fully self-contained and $\mathit{simple}$ proof of the KMW lower bound. The key argument is algorithmic, and it relies on an invariant that can be readily verified from the generation rules of the lower bound graphs. %K Computer Science, Distributed, Parallel, and Cluster Computing, cs.DC,Computer Science, Computational Complexity, cs.CC,Computer Science, Discrete Mathematics, cs.DM,Computer Science, Data Structures and Algorithms, cs.DS
[31]
N. R. Dayama, M. Shiripour, A. Oulasvirta, E. Ivanko, and A. Karrenbauer, “Foraging-based Optimization of Menu Systems,” 2020. . (arXiv: 2005.01292)
Abstract
Computational design of menu systems has been solved in limited cases such as the linear menu (list) as an assignment task, where commands are assigned to menu positions while optimizing for for users selection performance and distance of associated items. We show that this approach falls short with larger, hierarchically organized menu systems, where one must also take into account how users navigate hierarchical structures. This paper presents a novel integer programming formulation that models hierarchical menus as a combination of the exact set covering problem and the assignment problem. It organizes commands into ordered groups of ordered groups via a novel objective function based on information foraging theory. It minimizes, on the one hand, the time required to select a command whose location is known from previous usage and, on the other, the time wasted in irrelevant parts of the menu while searching for commands whose location is not known. The convergence of these two factors yields usable, well-ordered command hierarchies from a single model. In generated menus, the lead (first) elements of a group or tab are good indicators of the remaining contents, thereby facilitating the search process. In a controlled usability evaluation, the performance of computationally designed menus was 25 faster than existing commercial designs with respect to selection time. The algorithm is efficient for large, representative instances of the problem. We further show applications in personalization and adaptation of menu systems.
Export
BibTeX
@online{Dayama_arXiv2005.01292, TITLE = {Foraging-based Optimization of Menu Systems}, AUTHOR = {Dayama, Niraj Ramesh and Shiripour, Morteza and Oulasvirta, Antti and Ivanko, Evgeny and Karrenbauer, Andreas}, LANGUAGE = {eng}, EPRINT = {2005.01292}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {Computational design of menu systems has been solved in limited cases such as the linear menu (list) as an assignment task, where commands are assigned to menu positions while optimizing for for users selection performance and distance of associated items. We show that this approach falls short with larger, hierarchically organized menu systems, where one must also take into account how users navigate hierarchical structures. This paper presents a novel integer programming formulation that models hierarchical menus as a combination of the exact set covering problem and the assignment problem. It organizes commands into ordered groups of ordered groups via a novel objective function based on information foraging theory. It minimizes, on the one hand, the time required to select a command whose location is known from previous usage and, on the other, the time wasted in irrelevant parts of the menu while searching for commands whose location is not known. The convergence of these two factors yields usable, well-ordered command hierarchies from a single model. In generated menus, the lead (first) elements of a group or tab are good indicators of the remaining contents, thereby facilitating the search process. In a controlled usability evaluation, the performance of computationally designed menus was 25 faster than existing commercial designs with respect to selection time. The algorithm is efficient for large, representative instances of the problem. We further show applications in personalization and adaptation of menu systems.}, }
Endnote
%0 Report %A Dayama, Niraj Ramesh %A Shiripour, Morteza %A Oulasvirta, Antti %A Ivanko, Evgeny %A Karrenbauer, Andreas %+ External Organizations External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Foraging-based Optimization of Menu Systems : %G eng %U http://hdl.handle.net/21.11116/0000-0007-4689-0 %D 2020 %X Computational design of menu systems has been solved in limited cases such as the linear menu (list) as an assignment task, where commands are assigned to menu positions while optimizing for for users selection performance and distance of associated items. We show that this approach falls short with larger, hierarchically organized menu systems, where one must also take into account how users navigate hierarchical structures. This paper presents a novel integer programming formulation that models hierarchical menus as a combination of the exact set covering problem and the assignment problem. It organizes commands into ordered groups of ordered groups via a novel objective function based on information foraging theory. It minimizes, on the one hand, the time required to select a command whose location is known from previous usage and, on the other, the time wasted in irrelevant parts of the menu while searching for commands whose location is not known. The convergence of these two factors yields usable, well-ordered command hierarchies from a single model. In generated menus, the lead (first) elements of a group or tab are good indicators of the remaining contents, thereby facilitating the search process. In a controlled usability evaluation, the performance of computationally designed menus was 25 faster than existing commercial designs with respect to selection time. The algorithm is efficient for large, representative instances of the problem. We further show applications in personalization and adaptation of menu systems. %K Computer Science, Human-Computer Interaction, cs.HC,Mathematics, Optimization and Control, math.OC
[32]
M. de Berg and S. Kisfaludi-Bak, “Lower Bounds for Dominating Set in Ball Graphs and for Weighted Dominating Set in Unit-Ball Graphs,” in Treewidth, Kernels, and Algorithms, Berlin: Springer, 2020.
Export
BibTeX
@incollection{BergK20, TITLE = {Lower Bounds for Dominating Set in Ball Graphs and for Weighted Dominating Set in Unit-Ball Graphs}, AUTHOR = {de Berg, Mark and Kisfaludi-Bak, S{\'a}ndor}, LANGUAGE = {eng}, ISBN = {978-3-030-42070-3}, DOI = {10.1007/978-3-030-42071-0_5}, PUBLISHER = {Springer}, ADDRESS = {Berlin}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, BOOKTITLE = {Treewidth, Kernels, and Algorithms}, EDITOR = {Fomin, Fedor V. and Kratsch, Stefan and van Leeuwen, Erik Jan}, PAGES = {31--48}, SERIES = {Lecture Notes in Computer Science}, VOLUME = {12160}, }
Endnote
%0 Book Section %A de Berg, Mark %A Kisfaludi-Bak, Sándor %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Lower Bounds for Dominating Set in Ball Graphs and for Weighted Dominating Set in Unit-Ball Graphs : %G eng %U http://hdl.handle.net/21.11116/0000-0007-76CB-0 %R 10.1007/978-3-030-42071-0_5 %D 2020 %B Treewidth, Kernels, and Algorithms %E Fomin, Fedor V.; Kratsch, Stefan; van Leeuwen, Erik Jan %P 31 - 48 %I Springer %C Berlin %@ 978-3-030-42070-3 %S Lecture Notes in Computer Science %N 12160
[33]
B. Doerr and M. Künnemann, “Improved Protocols and Hardness Results for the Two-Player Cryptogenography Problem,” IEEE Transactions on Information Theory, vol. 66, no. 9, 2020.
Export
BibTeX
@article{Doerr2020, TITLE = {Improved Protocols and Hardness Results for the Two-Player Cryptogenography Problem}, AUTHOR = {Doerr, Benjamin and K{\"u}nnemann, Marvin}, LANGUAGE = {eng}, ISSN = {0018-9448}, DOI = {10.1109/TIT.2020.2978385}, PUBLISHER = {IEEE}, ADDRESS = {Piscataway, NJ}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {IEEE Transactions on Information Theory}, VOLUME = {66}, NUMBER = {9}, PAGES = {5729--5741}, }
Endnote
%0 Journal Article %A Doerr, Benjamin %A Künnemann, Marvin %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Improved Protocols and Hardness Results for the Two-Player Cryptogenography Problem : %G eng %U http://hdl.handle.net/21.11116/0000-0006-FAC1-6 %R 10.1109/TIT.2020.2978385 %7 2020 %D 2020 %J IEEE Transactions on Information Theory %V 66 %N 9 %& 5729 %P 5729 - 5741 %I IEEE %C Piscataway, NJ %@ false
[34]
E. Facca, A. Karrenbauer, P. Kolev, and K. Mehlhorn, “Convergence of the Non-Uniform Directed Physarum Model,” Theoretical Computer Science, vol. 816, 2020.
Export
BibTeX
@article{FaccaTCS2020, TITLE = {Convergence of the Non-Uniform Directed Physarum Model}, AUTHOR = {Facca, Enrico and Karrenbauer, Andreas and Kolev, Pavel and Mehlhorn, Kurt}, LANGUAGE = {eng}, ISSN = {0304-3975}, DOI = {10.1016/j.tcs.2020.01.034}, PUBLISHER = {Elsevier}, ADDRESS = {Amsterdam}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {Theoretical Computer Science}, VOLUME = {816}, PAGES = {184--194}, }
Endnote
%0 Journal Article %A Facca, Enrico %A Karrenbauer, Andreas %A Kolev, Pavel %A Mehlhorn, Kurt %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Convergence of the Non-Uniform Directed Physarum Model : %G eng %U http://hdl.handle.net/21.11116/0000-0006-97B9-F %R 10.1016/j.tcs.2020.01.034 %7 2020 %D 2020 %J Theoretical Computer Science %V 816 %& 184 %P 184 - 194 %I Elsevier %C Amsterdam %@ false
[35]
Y. Faenza and T. Kavitha, “Quasi-popular Matchings, Optimality, and Extended Formulations,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{Faenza_SODA20, TITLE = {Quasi-popular Matchings, Optimality, and Extended Formulations}, AUTHOR = {Faenza, Yuri and Kavitha, Telikepalli}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.5555/3381089.3381109}, PUBLISHER = {SIAM}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {325--344}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Faenza, Yuri %A Kavitha, Telikepalli %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Quasi-popular Matchings, Optimality, and Extended Formulations : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F26C-0 %R 10.5555/3381089.3381109 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 325 - 344 %I SIAM %@ 978-1-61197-599-4
[36]
N. Fischer and C. Ikenmeyer, “The Computational Complexity of Plethysm Coefficients,” Computational Complexity, vol. 29, no. 2, 2020.
Export
BibTeX
@article{Fischer_2020, TITLE = {The Computational Complexity of Plethysm Coefficients}, AUTHOR = {Fischer, Nick and Ikenmeyer, Christian}, LANGUAGE = {eng}, DOI = {10.1007/s00037-020-00198-4}, PUBLISHER = {Springer}, ADDRESS = {New York,NY}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, JOURNAL = {Computational Complexity}, VOLUME = {29}, NUMBER = {2}, EID = {8}, }
Endnote
%0 Journal Article %A Fischer, Nick %A Ikenmeyer, Christian %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T The Computational Complexity of Plethysm Coefficients : %G eng %U http://hdl.handle.net/21.11116/0000-0007-72D0-D %R 10.1007/s00037-020-00198-4 %7 2020 %D 2020 %J Computational Complexity %V 29 %N 2 %Z sequence number: 8 %I Springer %C New York,NY
[37]
S. Forster, D. Nanongkai, L. Yang, T. Saranurak, and S. Yingchareonthawornchai, “Computing and Testing Small Connectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{Forster_SODA20, TITLE = {Computing and Testing Small Connectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms}, AUTHOR = {Forster, Sebastian and Nanongkai, Danupon and Yang, Liu and Saranurak, Thatchaphol and Yingchareonthawornchai, Sorrachai}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.5555/3381089.3381215}, PUBLISHER = {SIAM}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {2046--2065}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Forster, Sebastian %A Nanongkai, Danupon %A Yang, Liu %A Saranurak, Thatchaphol %A Yingchareonthawornchai, Sorrachai %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations External Organizations External Organizations %T Computing and Testing Small Connectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F274-6 %R 10.5555/3381089.3381215 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 2046 - 2065 %I SIAM %@ 978-1-61197-599-4
[38]
A. Göke, D. Marx, and M. Mnich, “Hitting Long Directed Cycles Is Fixed-Parameter Tractable,” in 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), Saarbrücken, Germany (Virtual Conference), 2020.
Export
BibTeX
@inproceedings{Goeke_ICALP2020, TITLE = {Hitting Long Directed Cycles Is Fixed-Parameter Tractable}, AUTHOR = {G{\"o}ke, Alexander and Marx, D{\'a}niel and Mnich, Matthias}, LANGUAGE = {eng}, ISSN = {1868-8969}, ISBN = {978-3-95977-138-2}, URL = {urn:nbn:de:0030-drops-124664}, DOI = {10.4230/LIPIcs.ICALP.2020.59}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, EDITOR = {Czumaj, Artur and Dawa, Anuj and Merelli, Emanuela}, EID = {59}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {168}, ADDRESS = {Saarbr{\"u}cken, Germany (Virtual Conference)}, }
Endnote
%0 Conference Proceedings %A Göke, Alexander %A Marx, Dániel %A Mnich, Matthias %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Hitting Long Directed Cycles Is Fixed-Parameter Tractable : %G eng %U http://hdl.handle.net/21.11116/0000-0007-491E-7 %R 10.4230/LIPIcs.ICALP.2020.59 %U urn:nbn:de:0030-drops-124664 %D 2020 %B 47th International Colloquium on Automata, Languages, and Programming %Z date of event: 2020-07-08 - 2020-07-11 %C Saarbrücken, Germany (Virtual Conference) %B 47th International Colloquium on Automata, Languages, and Programming %E Czumaj, Artur; Dawa, Anuj; Merelli, Emanuela %Z sequence number: 59 %I Schloss Dagstuhl %@ 978-3-95977-138-2 %B Leibniz International Proceedings in Informatics %N 168 %@ false %U https://drops.dagstuhl.de/opus/volltexte/2020/12466/https://creativecommons.org/licenses/by/3.0/legalcode
[39]
A. Göke, D. Marx, and M. Mnich, “Hitting Long Directed Cycles is Fixed-Parameter Tractable,” 2020. [Online]. Available: https://arxiv.org/abs/2003.05267. (arXiv: 2003.05267)
Abstract
In the Directed Long Cycle Hitting Set} problem we are given a directed graph $G$, and the task is to find a set $S$ of at most $k$ vertices/arcs such that $G-S$ has no cycle of length longer than $\ell$. We show that the problem can be solved in time $2^{\mathcal O(\ell k^3\log k + k^5\log k\log\ell)}\cdot n^{\mathcal O(1)}$, that is, it is fixed-parameter tractable (FPT) parameterized by $k$ and $\ell$. This algorithm can be seen as a far-reaching generalization of the fixed-parameter tractability of {\sc Mixed Graph Feedback Vertex Set} [Bonsma and Lokshtanov WADS 2011], which is already a common generalization of the fixed-parameter tractability of (undirected) {\sc Feedback Vertex Set} and the {\sc Directed Feedback Vertex Set} problems, two classic results in parameterized algorithms. The algorithm requires significant insights into the structure of graphs without directed cycles length longer than $\ell$ and can be seen as an exact version of the approximation algorithm following from the Erd{\H{o}}s-P{\'o}sa property for long cycles in directed graphs proved by Kreutzer and Kawarabayashi [STOC 2015].
Export
BibTeX
@online{Goeke_arXiv2003.05267, TITLE = {Hitting Long Directed Cycles is Fixed-Parameter Tractable}, AUTHOR = {G{\"o}ke, Alexander and Marx, D{\'a}niel and Mnich, Matthias}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2003.05267}, EPRINT = {2003.05267}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {In the Directed Long Cycle Hitting Set} problem we are given a directed graph $G$, and the task is to find a set $S$ of at most $k$ vertices/arcs such that $G-S$ has no cycle of length longer than $\ell$. We show that the problem can be solved in time $2^{\mathcal O(\ell k^3\log k + k^5\log k\log\ell)}\cdot n^{\mathcal O(1)}$, that is, it is fixed-parameter tractable (FPT) parameterized by $k$ and $\ell$. This algorithm can be seen as a far-reaching generalization of the fixed-parameter tractability of {\sc Mixed Graph Feedback Vertex Set} [Bonsma and Lokshtanov WADS 2011], which is already a common generalization of the fixed-parameter tractability of (undirected) {\sc Feedback Vertex Set} and the {\sc Directed Feedback Vertex Set} problems, two classic results in parameterized algorithms. The algorithm requires significant insights into the structure of graphs without directed cycles length longer than $\ell$ and can be seen as an exact version of the approximation algorithm following from the Erd{\H{o}}s-P{\'o}sa property for long cycles in directed graphs proved by Kreutzer and Kawarabayashi [STOC 2015].}, }
Endnote
%0 Report %A Göke, Alexander %A Marx, Dániel %A Mnich, Matthias %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Hitting Long Directed Cycles is Fixed-Parameter Tractable : %G eng %U http://hdl.handle.net/21.11116/0000-0007-4923-0 %U https://arxiv.org/abs/2003.05267 %D 2020 %X In the Directed Long Cycle Hitting Set} problem we are given a directed graph $G$, and the task is to find a set $S$ of at most $k$ vertices/arcs such that $G-S$ has no cycle of length longer than $\ell$. We show that the problem can be solved in time $2^{\mathcal O(\ell k^3\log k + k^5\log k\log\ell)}\cdot n^{\mathcal O(1)}$, that is, it is fixed-parameter tractable (FPT) parameterized by $k$ and $\ell$. This algorithm can be seen as a far-reaching generalization of the fixed-parameter tractability of {\sc Mixed Graph Feedback Vertex Set} [Bonsma and Lokshtanov WADS 2011], which is already a common generalization of the fixed-parameter tractability of (undirected) {\sc Feedback Vertex Set} and the {\sc Directed Feedback Vertex Set} problems, two classic results in parameterized algorithms. The algorithm requires significant insights into the structure of graphs without directed cycles length longer than $\ell$ and can be seen as an exact version of the approximation algorithm following from the Erd{\H{o}}s-P{\'o}sa property for long cycles in directed graphs proved by Kreutzer and Kawarabayashi [STOC 2015]. %K Computer Science, Data Structures and Algorithms, cs.DS
[40]
A. Göke, D. Marx, and M. Mnich, “Parameterized Algorithms for Generalizations of Directed Feedback Vertex Set,” 2020. [Online]. Available: https://arxiv.org/abs/2003.02483. (arXiv: 2003.02483)
Abstract
The Directed Feedback Vertex Set (DFVS) problem takes as input a directed graph~$G$ and seeks a smallest vertex set~$S$ that hits all cycles in $G$. This is one of Karp's 21 $\mathsf{NP}$-complete problems. Resolving the parameterized complexity status of DFVS was a long-standing open problem until Chen et al. [STOC 2008, J. ACM 2008] showed its fixed-parameter tractability via a $4^kk! n^{\mathcal{O}(1)}$-time algorithm, where $k = |S|$. Here we show fixed-parameter tractability of two generalizations of DFVS: - Find a smallest vertex set $S$ such that every strong component of $G - S$ has size at most~$s$: we give an algorithm solving this problem in time $4^k(ks+k+s)!\cdot n^{\mathcal{O}(1)}$. This generalizes an algorithm by Xiao [JCSS 2017] for the undirected version of the problem. - Find a smallest vertex set $S$ such that every non-trivial strong component of $G - S$ is 1-out-regular: we give an algorithm solving this problem in time $2^{\mathcal{O}(k^3)}\cdot n^{\mathcal{O}(1)}$. We also solve the corresponding arc versions of these problems by fixed-parameter algorithms.
Export
BibTeX
@online{Goeke_arXiv2003.02483, TITLE = {Parameterized Algorithms for Generalizations of Directed Feedback Vertex Set}, AUTHOR = {G{\"o}ke, Alexander and Marx, D{\'a}niel and Mnich, Matthias}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2003.02483}, EPRINT = {2003.02483}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {The Directed Feedback Vertex Set (DFVS) problem takes as input a directed graph~$G$ and seeks a smallest vertex set~$S$ that hits all cycles in $G$. This is one of Karp's 21 $\mathsf{NP}$-complete problems. Resolving the parameterized complexity status of DFVS was a long-standing open problem until Chen et al. [STOC 2008, J. ACM 2008] showed its fixed-parameter tractability via a $4^kk! n^{\mathcal{O}(1)}$-time algorithm, where $k = |S|$. Here we show fixed-parameter tractability of two generalizations of DFVS: -- Find a smallest vertex set $S$ such that every strong component of $G -- S$ has size at most~$s$: we give an algorithm solving this problem in time $4^k(ks+k+s)!\cdot n^{\mathcal{O}(1)}$. This generalizes an algorithm by Xiao [JCSS 2017] for the undirected version of the problem. -- Find a smallest vertex set $S$ such that every non-trivial strong component of $G -- S$ is 1-out-regular: we give an algorithm solving this problem in time $2^{\mathcal{O}(k^3)}\cdot n^{\mathcal{O}(1)}$. We also solve the corresponding arc versions of these problems by fixed-parameter algorithms.}, }
Endnote
%0 Report %A Göke, Alexander %A Marx, Dániel %A Mnich, Matthias %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Parameterized Algorithms for Generalizations of Directed Feedback Vertex Set : %G eng %U http://hdl.handle.net/21.11116/0000-0007-4920-3 %U https://arxiv.org/abs/2003.02483 %D 2020 %X The Directed Feedback Vertex Set (DFVS) problem takes as input a directed graph~$G$ and seeks a smallest vertex set~$S$ that hits all cycles in $G$. This is one of Karp's 21 $\mathsf{NP}$-complete problems. Resolving the parameterized complexity status of DFVS was a long-standing open problem until Chen et al. [STOC 2008, J. ACM 2008] showed its fixed-parameter tractability via a $4^kk! n^{\mathcal{O}(1)}$-time algorithm, where $k = |S|$. Here we show fixed-parameter tractability of two generalizations of DFVS: - Find a smallest vertex set $S$ such that every strong component of $G - S$ has size at most~$s$: we give an algorithm solving this problem in time $4^k(ks+k+s)!\cdot n^{\mathcal{O}(1)}$. This generalizes an algorithm by Xiao [JCSS 2017] for the undirected version of the problem. - Find a smallest vertex set $S$ such that every non-trivial strong component of $G - S$ is 1-out-regular: we give an algorithm solving this problem in time $2^{\mathcal{O}(k^3)}\cdot n^{\mathcal{O}(1)}$. We also solve the corresponding arc versions of these problems by fixed-parameter algorithms. %K Computer Science, Data Structures and Algorithms, cs.DS
[41]
D. Halperin, S. Har-Peled, K. Mehlhorn, E. Oh, and M. Sharir, “The Maximum-Level Vertex in an Arrangement of Lines,” 2020. [Online]. Available: http://arxiv.org/abs/2003.00518. (arXiv: 2003.00518)
Abstract
Let $L$ be a set of $n$ lines in the plane, not necessarily in general position. We present an efficient algorithm for finding all the vertices of the arrangement $A(L)$ of maximum level, where the level of a vertex $v$ is the number of lines of $L$ that pass strictly below $v$. The problem, posed in Exercise~8.13 in de Berg etal [BCKO08], appears to be much harder than it seems, as this vertex might not be on the upper envelope of the lines. We first assume that all the lines of $L$ are distinct, and distinguish between two cases, depending on whether or not the upper envelope of $L$ contains a bounded edge. In the former case, we show that the number of lines of $L$ that pass above any maximum level vertex $v_0$ is only $O(\log n)$. In the latter case, we establish a similar property that holds after we remove some of the lines that are incident to the single vertex of the upper envelope. We present algorithms that run, in both cases, in optimal $O(n\log n)$ time. We then consider the case where the lines of $L$ are not necessarily distinct. This setup is more challenging, and the best we have is an algorithm that computes all the maximum-level vertices in time $O(n^{4/3}\log^{3}n)$. Finally, we consider a related combinatorial question for degenerate arrangements, where many lines may intersect in a single point, but all the lines are distinct: We bound the complexity of the weighted $k$-level in such an arrangement, where the weight of a vertex is the number of lines that pass through the vertex. We show that the bound in this case is $O(n^{4/3})$, which matches the corresponding bound for non-degenerate arrangements, and we use this bound in the analysis of one of our algorithms.
Export
BibTeX
@online{Halperin_arXiv2003.00518, TITLE = {The Maximum-Level Vertex in an Arrangement of Lines}, AUTHOR = {Halperin, Dan and Har-Peled, Sariel and Mehlhorn, Kurt and Oh, Eunjin and Sharir, Micha}, LANGUAGE = {eng}, URL = {http://arxiv.org/abs/2003.00518}, EPRINT = {2003.00518}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {Let $L$ be a set of $n$ lines in the plane, not necessarily in general position. We present an efficient algorithm for finding all the vertices of the arrangement $A(L)$ of maximum level, where the level of a vertex $v$ is the number of lines of $L$ that pass strictly below $v$. The problem, posed in Exercise~8.13 in de Berg etal [BCKO08], appears to be much harder than it seems, as this vertex might not be on the upper envelope of the lines. We first assume that all the lines of $L$ are distinct, and distinguish between two cases, depending on whether or not the upper envelope of $L$ contains a bounded edge. In the former case, we show that the number of lines of $L$ that pass above any maximum level vertex $v_0$ is only $O(\log n)$. In the latter case, we establish a similar property that holds after we remove some of the lines that are incident to the single vertex of the upper envelope. We present algorithms that run, in both cases, in optimal $O(n\log n)$ time. We then consider the case where the lines of $L$ are not necessarily distinct. This setup is more challenging, and the best we have is an algorithm that computes all the maximum-level vertices in time $O(n^{4/3}\log^{3}n)$. Finally, we consider a related combinatorial question for degenerate arrangements, where many lines may intersect in a single point, but all the lines are distinct: We bound the complexity of the weighted $k$-level in such an arrangement, where the weight of a vertex is the number of lines that pass through the vertex. We show that the bound in this case is $O(n^{4/3})$, which matches the corresponding bound for non-degenerate arrangements, and we use this bound in the analysis of one of our algorithms.}, }
Endnote
%0 Report %A Halperin, Dan %A Har-Peled, Sariel %A Mehlhorn, Kurt %A Oh, Eunjin %A Sharir, Micha %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T The Maximum-Level Vertex in an Arrangement of Lines : %G eng %U http://hdl.handle.net/21.11116/0000-0006-AFB1-D %U http://arxiv.org/abs/2003.00518 %D 2020 %X Let $L$ be a set of $n$ lines in the plane, not necessarily in general position. We present an efficient algorithm for finding all the vertices of the arrangement $A(L)$ of maximum level, where the level of a vertex $v$ is the number of lines of $L$ that pass strictly below $v$. The problem, posed in Exercise~8.13 in de Berg etal [BCKO08], appears to be much harder than it seems, as this vertex might not be on the upper envelope of the lines. We first assume that all the lines of $L$ are distinct, and distinguish between two cases, depending on whether or not the upper envelope of $L$ contains a bounded edge. In the former case, we show that the number of lines of $L$ that pass above any maximum level vertex $v_0$ is only $O(\log n)$. In the latter case, we establish a similar property that holds after we remove some of the lines that are incident to the single vertex of the upper envelope. We present algorithms that run, in both cases, in optimal $O(n\log n)$ time. We then consider the case where the lines of $L$ are not necessarily distinct. This setup is more challenging, and the best we have is an algorithm that computes all the maximum-level vertices in time $O(n^{4/3}\log^{3}n)$. Finally, we consider a related combinatorial question for degenerate arrangements, where many lines may intersect in a single point, but all the lines are distinct: We bound the complexity of the weighted $k$-level in such an arrangement, where the weight of a vertex is the number of lines that pass through the vertex. We show that the bound in this case is $O(n^{4/3})$, which matches the corresponding bound for non-degenerate arrangements, and we use this bound in the analysis of one of our algorithms. %K Computer Science, Computational Geometry, cs.CG
[42]
P. Jain, L. Kanesh, and P. Misra, “Conflict Free Version of Covering Problems on Graphs: Classical and Parameterized,” Theory of Computing Systems, 2020.
Export
BibTeX
@article{Jain2020, TITLE = {Conflict Free Version of Covering Problems on Graphs: {C}lassical and Parameterized}, AUTHOR = {Jain, Pallavi and Kanesh, Lawqueen and Misra, Pranabendu}, LANGUAGE = {eng}, ISSN = {1432-4350}, DOI = {10.1007/s00224-019-09964-6}, PUBLISHER = {Springer}, ADDRESS = {New York, NY}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, JOURNAL = {Theory of Computing Systems}, }
Endnote
%0 Journal Article %A Jain, Pallavi %A Kanesh, Lawqueen %A Misra, Pranabendu %+ External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Conflict Free Version of Covering Problems on Graphs: Classical and Parameterized : %G eng %U http://hdl.handle.net/21.11116/0000-0006-90BA-5 %R 10.1007/s00224-019-09964-6 %7 2020 %D 2020 %J Theory of Computing Systems %I Springer %C New York, NY %@ false
[43]
M. John, “Of keyboards and beyond,” Universität des Saarlandes, Saarbrücken, 2020.
Export
BibTeX
@phdthesis{John_2019, TITLE = {Of keyboards and beyond}, AUTHOR = {John, Maximilian}, DOI = {http://dx.doi.org/10.22028/D291-30635}, SCHOOL = {Universit{\"a}t des Saarlandes}, ADDRESS = {Saarbr{\"u}cken}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, }
Endnote
%0 Thesis %A John, Maximilian %Y Karrenbauer, Andreas %A referee: Mehlhorn, Kurt %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society International Max Planck Research School, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Of keyboards and beyond : optimization in human-computer interaction %U http://hdl.handle.net/21.11116/0000-0007-7152-D %R http://dx.doi.org/10.22028/D291-30635 %I Universität des Saarlandes %C Saarbrücken %D 2020 %P 91 p. %V phd %9 phd %U https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28954
[44]
A. Karrenbauer, P. Kolev, and K. Mehlhorn, “Convergence of the Non-Uniform Physarum Dynamics,” Theoretical Computer Science, vol. 816, 2020.
Export
BibTeX
@article{KarrenbauerTCS2020, TITLE = {Convergence of the Non-Uniform Physarum Dynamics}, AUTHOR = {Karrenbauer, Andreas and Kolev, Pavel and Mehlhorn, Kurt}, LANGUAGE = {eng}, ISSN = {0304-3975}, DOI = {10.1016/j.tcs.2020.02.032}, PUBLISHER = {Elsevier}, ADDRESS = {Amsterdam}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {Theoretical Computer Science}, VOLUME = {816}, PAGES = {260--269}, }
Endnote
%0 Journal Article %A Karrenbauer, Andreas %A Kolev, Pavel %A Mehlhorn, Kurt %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Convergence of the Non-Uniform Physarum Dynamics : %G eng %U http://hdl.handle.net/21.11116/0000-0006-97C1-5 %R 10.1016/j.tcs.2020.02.032 %7 2020 %D 2020 %J Theoretical Computer Science %V 816 %& 260 %P 260 - 269 %I Elsevier %C Amsterdam %@ false
[45]
D. M. Katz, C. Coupette, J. Beckedorf, and D. Hartung, “Complex Societies and the Growth of the Law,” Scientific Reports, vol. 10, 2020.
Export
BibTeX
@article{Katz2020, TITLE = {Complex Societies and the Growth of the Law}, AUTHOR = {Katz, Daniel Martin and Coupette, Corinna and Beckedorf, Janis and Hartung, Dirk}, LANGUAGE = {eng}, ISSN = {2045-2322}, DOI = {10.1038/s41598-020-73623-x}, PUBLISHER = {Nature Publishing Group}, ADDRESS = {London, UK}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, JOURNAL = {Scientific Reports}, VOLUME = {10}, EID = {18737}, }
Endnote
%0 Journal Article %A Katz, Daniel Martin %A Coupette, Corinna %A Beckedorf, Janis %A Hartung, Dirk %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations %T Complex Societies and the Growth of the Law : %G eng %U http://hdl.handle.net/21.11116/0000-0007-5C0B-7 %R 10.1038/s41598-020-73623-x %7 2020 %D 2020 %J Scientific Reports %O Sci. Rep. %V 10 %Z sequence number: 18737 %I Nature Publishing Group %C London, UK %@ false
[46]
S. Kisfaludi-Bak, “A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP,” in 36th International Symposium on Computational Geometry (SoCG 2020), Zürich, Switzerland (Virtual Conference), 2020.
Export
BibTeX
@inproceedings{SoCG/Kisfaludi-Bak20, TITLE = {A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic {TSP}}, AUTHOR = {Kisfaludi-Bak, S{\'a}ndor}, LANGUAGE = {eng}, ISBN = {978-3-95977-143-6}, URL = {urn:nbn:de:0030-drops-122135}, DOI = {10.4230/LIPIcs.SoCG.2020.55}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {36th International Symposium on Computational Geometry (SoCG 2020)}, EDITOR = {Cabello, Sergio and Chen, Danny Z.}, PAGES = {1--15}, EID = {55}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {164}, ADDRESS = {Z{\"u}rich, Switzerland (Virtual Conference)}, }
Endnote
%0 Conference Proceedings %A Kisfaludi-Bak, Sándor %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society %T A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP : %G eng %U http://hdl.handle.net/21.11116/0000-0007-76E8-F %R 10.4230/LIPIcs.SoCG.2020.55 %U urn:nbn:de:0030-drops-122135 %D 2020 %B 36th International Symposium on Computational Geometry %Z date of event: 2020-06-23 - 2020-06-26 %C Zürich, Switzerland (Virtual Conference) %B 36th International Symposium on Computational Geometry %E Cabello, Sergio; Chen, Danny Z. %P 1 - 15 %Z sequence number: 55 %I Schloss Dagstuhl %@ 978-3-95977-143-6 %B Leibniz International Proceedings in Informatics %N 164 %U https://drops.dagstuhl.de/opus/volltexte/2020/12213/https://creativecommons.org/licenses/by/3.0/legalcode
[47]
S. Kisfaludi-Bak, “Hyperbolic Intersection Graphs and (Quasi)-Polynomial Time,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{SODA/Kisfaludi-Bak20, TITLE = {Hyperbolic Intersection Graphs and (Quasi)-Polynomial Time}, AUTHOR = {Kisfaludi-Bak, S{\'a}ndor}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.1137/1.9781611975994.100}, PUBLISHER = {SIAM}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {1621--1638}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Kisfaludi-Bak, Sándor %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Hyperbolic Intersection Graphs and (Quasi)-Polynomial Time : %G eng %U http://hdl.handle.net/21.11116/0000-0007-76EB-C %R 10.1137/1.9781611975994.100 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 1621 - 1638 %I SIAM %@ 978-1-61197-599-4
[48]
S. Kisfaludi-Bak, J. Nederlof, and K. Węgrzycki, “A Gap-ETH-Tight Approximation Scheme for Euclidean TSP,” 2020. [Online]. Available: https://arxiv.org/abs/2011.03778. (arXiv: 2011.03778)
Abstract
We revisit the classic task of finding the shortest tour of $n$ points in $d$-dimensional Euclidean space, for any fixed constant $d \geq 2$. We determine the optimal dependence on $\varepsilon$ in the running time of an algorithm that computes a $(1+\varepsilon)$-approximate tour, under a plausible assumption. Specifically, we give an algorithm that runs in $2^{\mathcal{O}(1/\varepsilon^{d-1})} n\log n$ time. This improves the previously smallest dependence on $\varepsilon$ in the running time $(1/\varepsilon)^{\mathcal{O}(1/\varepsilon^{d-1})}n \log n$ of the algorithm by Rao and Smith (STOC 1998). We also show that a $2^{o(1/\varepsilon^{d-1})}\text{poly}(n)$ algorithm would violate the Gap-Exponential Time Hypothesis (Gap-ETH). Our new algorithm builds upon the celebrated quadtree-based methods initially proposed by Arora (J. ACM 1998), but it adds a simple new idea that we call \emph{sparsity-sensitive patching}. On a high level this lets the granularity with which we simplify the tour depend on how sparse it is locally. Our approach is (arguably) simpler than the one by Rao and Smith since it can work without geometric spanners. We demonstrate the technique extends easily to other problems, by showing as an example that it also yields a Gap-ETH-tight approximation scheme for Rectilinear Steiner Tree.
Export
BibTeX
@online{Kisfaludi-BakNW20, TITLE = {A Gap-{ETH}-Tight Approximation Scheme for Euclidean {TSP}}, AUTHOR = {Kisfaludi-Bak, S{\'a}ndor and Nederlof, Jesper and W{\c e}grzycki, Karol}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2011.03778}, EPRINT = {2011.03778}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {We revisit the classic task of finding the shortest tour of $n$ points in $d$-dimensional Euclidean space, for any fixed constant $d \geq 2$. We determine the optimal dependence on $\varepsilon$ in the running time of an algorithm that computes a $(1+\varepsilon)$-approximate tour, under a plausible assumption. Specifically, we give an algorithm that runs in $2^{\mathcal{O}(1/\varepsilon^{d-1})} n\log n$ time. This improves the previously smallest dependence on $\varepsilon$ in the running time $(1/\varepsilon)^{\mathcal{O}(1/\varepsilon^{d-1})}n \log n$ of the algorithm by Rao and Smith (STOC 1998). We also show that a $2^{o(1/\varepsilon^{d-1})}\text{poly}(n)$ algorithm would violate the Gap-Exponential Time Hypothesis (Gap-ETH). Our new algorithm builds upon the celebrated quadtree-based methods initially proposed by Arora (J. ACM 1998), but it adds a simple new idea that we call \emph{sparsity-sensitive patching}. On a high level this lets the granularity with which we simplify the tour depend on how sparse it is locally. Our approach is (arguably) simpler than the one by Rao and Smith since it can work without geometric spanners. We demonstrate the technique extends easily to other problems, by showing as an example that it also yields a Gap-ETH-tight approximation scheme for Rectilinear Steiner Tree.}, }
Endnote
%0 Report %A Kisfaludi-Bak, Sándor %A Nederlof, Jesper %A Węgrzycki, Karol %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T A Gap-ETH-Tight Approximation Scheme for Euclidean TSP : %G eng %U http://hdl.handle.net/21.11116/0000-0007-7774-1 %U https://arxiv.org/abs/2011.03778 %D 2020 %X We revisit the classic task of finding the shortest tour of $n$ points in $d$-dimensional Euclidean space, for any fixed constant $d \geq 2$. We determine the optimal dependence on $\varepsilon$ in the running time of an algorithm that computes a $(1+\varepsilon)$-approximate tour, under a plausible assumption. Specifically, we give an algorithm that runs in $2^{\mathcal{O}(1/\varepsilon^{d-1})} n\log n$ time. This improves the previously smallest dependence on $\varepsilon$ in the running time $(1/\varepsilon)^{\mathcal{O}(1/\varepsilon^{d-1})}n \log n$ of the algorithm by Rao and Smith (STOC 1998). We also show that a $2^{o(1/\varepsilon^{d-1})}\text{poly}(n)$ algorithm would violate the Gap-Exponential Time Hypothesis (Gap-ETH). Our new algorithm builds upon the celebrated quadtree-based methods initially proposed by Arora (J. ACM 1998), but it adds a simple new idea that we call \emph{sparsity-sensitive patching}. On a high level this lets the granularity with which we simplify the tour depend on how sparse it is locally. Our approach is (arguably) simpler than the one by Rao and Smith since it can work without geometric spanners. We demonstrate the technique extends easily to other problems, by showing as an example that it also yields a Gap-ETH-tight approximation scheme for Rectilinear Steiner Tree. %K Computer Science, Computational Geometry, cs.CG,Computer Science, Computational Complexity, cs.CC,Computer Science, Data Structures and Algorithms, cs.DS
[49]
S. Kisfaludi-Bak, J. Nederlof, and E. J. van Leeuwen, “Nearly ETH-tight Algorithms for Planar Steiner Tree with Terminals on Few Faces,” ACM Transactions on Algorithms, 2020.
Export
BibTeX
@article{Kisfaludi-BakNL20b, TITLE = {Nearly {ETH}-tight Algorithms for Planar {Steiner} Tree with Terminals on Few Faces}, AUTHOR = {Kisfaludi-Bak, S{\'a}ndor and Nederlof, Jesper and van Leeuwen, Erik Jan}, LANGUAGE = {eng}, ISSN = {1549-6325}, DOI = {10.1145/3371389}, PUBLISHER = {ACM}, ADDRESS = {New York, NY}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, JOURNAL = {ACM Transactions on Algorithms}, EID = {28}, }
Endnote
%0 Journal Article %A Kisfaludi-Bak, Sándor %A Nederlof, Jesper %A van Leeuwen, Erik Jan %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations %T Nearly ETH-tight Algorithms for Planar Steiner Tree with Terminals on Few Faces : %G eng %U http://hdl.handle.net/21.11116/0000-0007-7796-A %R 10.1145/3371389 %7 2020 %D 2020 %J ACM Transactions on Algorithms %Z sequence number: 28 %I ACM %C New York, NY %@ false
[50]
P. Kleer and G. Schäfer, “Computation and Efficiency of Potential Function Minimizers of Combinatorial Congestion Games,” Mathematical Programming, 2020.
Export
BibTeX
@article{Kleer2020, TITLE = {Computation and Efficiency of Potential Function Minimizers of Combinatorial Congestion Games}, AUTHOR = {Kleer, Pieter and Sch{\"a}fer, Guido}, LANGUAGE = {eng}, DOI = {10.1007/s10107-020-01546-6}, PUBLISHER = {Springer}, ADDRESS = {New York, NY}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, JOURNAL = {Mathematical Programming}, }
Endnote
%0 Journal Article %A Kleer, Pieter %A Schäfer, Guido %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Computation and Efficiency of Potential Function Minimizers of Combinatorial Congestion Games : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F285-2 %R 10.1007/s10107-020-01546-6 %7 2020 %D 2020 %J Mathematical Programming %I Springer %C New York, NY
[51]
M. Künnemann and D. Marx, “Finding Small Satisfying Assignments Faster Than Brute Force: A Fine-Grained Perspective into Boolean Constraint Satisfaction,” in 35th Computational Complexity Conference (CCC 2020), Saarbrücken, Germany (Virtual Conference), 2020.
Export
BibTeX
@inproceedings{Kuennemann_CCC2020, TITLE = {Finding Small Satisfying Assignments Faster Than Brute Force: {A} Fine-Grained Perspective into Boolean Constraint Satisfaction}, AUTHOR = {K{\"u}nnemann, Marvin and Marx, D{\'a}niel}, LANGUAGE = {eng}, ISSN = {1868-8969}, ISBN = {978-3-95977-156-6}, URL = {urn:nbn:de:0030-drops-125791}, DOI = {10.4230/LIPIcs.CCC.2020.27}, PUBLISHER = {Schlos Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {35th Computational Complexity Conference (CCC 2020)}, EDITOR = {Saraf, Shubhangi}, EID = {27}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {169}, ADDRESS = {Saarbr{\"u}cken, Germany (Virtual Conference)}, }
Endnote
%0 Conference Proceedings %A Künnemann, Marvin %A Marx, Dániel %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Finding Small Satisfying Assignments Faster Than Brute Force: A Fine-Grained Perspective into Boolean Constraint Satisfaction : %G eng %U http://hdl.handle.net/21.11116/0000-0007-491C-9 %R 10.4230/LIPIcs.CCC.2020.27 %U urn:nbn:de:0030-drops-125791 %D 2020 %B 35th Computational Complexity Conference %Z date of event: 2020-07-28 - 2020-07-31 %C Saarbrücken, Germany (Virtual Conference) %B 35th Computational Complexity Conference %E Saraf, Shubhangi %Z sequence number: 27 %I Schlos Dagstuhl %@ 978-3-95977-156-6 %B Leibniz International Proceedings in Informatics %N 169 %@ false %U https://drops.dagstuhl.de/opus/volltexte/2020/12579/https://creativecommons.org/licenses/by/3.0/legalcode
[52]
M. Künnemann and D. Marx, “Finding Small Satisfying Assignments Faster Than Brute Force: A Fine-grained Perspective into Boolean Constraint Satisfaction,” 2020. [Online]. Available: https://arxiv.org/abs/2005.11541. (arXiv: 2005.11541)
Abstract
To study the question under which circumstances small solutions can be found faster than by exhaustive search (and by how much), we study the fine-grained complexity of Boolean constraint satisfaction with size constraint exactly $k$. More precisely, we aim to determine, for any finite constraint family, the optimal running time $f(k)n^{g(k)}$ required to find satisfying assignments that set precisely $k$ of the $n$ variables to $1$. Under central hardness assumptions on detecting cliques in graphs and 3-uniform hypergraphs, we give an almost tight characterization of $g(k)$ into four regimes: (1) Brute force is essentially best-possible, i.e., $g(k) = (1\pm o(1))k$, (2) the best algorithms are as fast as current $k$-clique algorithms, i.e., $g(k)=(\omega/3\pm o(1))k$, (3) the exponent has sublinear dependence on $k$ with $g(k) \in [\Omega(\sqrt[3]{k}), O(\sqrt{k})]$, or (4) the problem is fixed-parameter tractable, i.e., $g(k) = O(1)$. This yields a more fine-grained perspective than a previous FPT/W[1]-hardness dichotomy (Marx, Computational Complexity 2005). Our most interesting technical contribution is a $f(k)n^{4\sqrt{k}}$-time algorithm for SubsetSum with precedence constraints parameterized by the target $k$ -- particularly the approach, based on generalizing a bound on the Frobenius coin problem to a setting with precedence constraints, might be of independent interest.
Export
BibTeX
@online{Kuennemann_arXiv2005.11541, TITLE = {Finding Small Satisfying Assignments Faster Than Brute Force: {A} Fine-grained Perspective into {B}oolean Constraint Satisfaction}, AUTHOR = {K{\"u}nnemann, Marvin and Marx, D{\'a}niel}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2005.11541}, EPRINT = {2005.11541}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {To study the question under which circumstances small solutions can be found faster than by exhaustive search (and by how much), we study the fine-grained complexity of Boolean constraint satisfaction with size constraint exactly $k$. More precisely, we aim to determine, for any finite constraint family, the optimal running time $f(k)n^{g(k)}$ required to find satisfying assignments that set precisely $k$ of the $n$ variables to $1$. Under central hardness assumptions on detecting cliques in graphs and 3-uniform hypergraphs, we give an almost tight characterization of $g(k)$ into four regimes: (1) Brute force is essentially best-possible, i.e., $g(k) = (1\pm o(1))k$, (2) the best algorithms are as fast as current $k$-clique algorithms, i.e., $g(k)=(\omega/3\pm o(1))k$, (3) the exponent has sublinear dependence on $k$ with $g(k) \in [\Omega(\sqrt[3]{k}), O(\sqrt{k})]$, or (4) the problem is fixed-parameter tractable, i.e., $g(k) = O(1)$. This yields a more fine-grained perspective than a previous FPT/W[1]-hardness dichotomy (Marx, Computational Complexity 2005). Our most interesting technical contribution is a $f(k)n^{4\sqrt{k}}$-time algorithm for SubsetSum with precedence constraints parameterized by the target $k$ -- particularly the approach, based on generalizing a bound on the Frobenius coin problem to a setting with precedence constraints, might be of independent interest.}, }
Endnote
%0 Report %A Künnemann, Marvin %A Marx, Dániel %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Finding Small Satisfying Assignments Faster Than Brute Force: A Fine-grained Perspective into Boolean Constraint Satisfaction : %G eng %U http://hdl.handle.net/21.11116/0000-0007-492E-5 %U https://arxiv.org/abs/2005.11541 %D 2020 %X To study the question under which circumstances small solutions can be found faster than by exhaustive search (and by how much), we study the fine-grained complexity of Boolean constraint satisfaction with size constraint exactly $k$. More precisely, we aim to determine, for any finite constraint family, the optimal running time $f(k)n^{g(k)}$ required to find satisfying assignments that set precisely $k$ of the $n$ variables to $1$. Under central hardness assumptions on detecting cliques in graphs and 3-uniform hypergraphs, we give an almost tight characterization of $g(k)$ into four regimes: (1) Brute force is essentially best-possible, i.e., $g(k) = (1\pm o(1))k$, (2) the best algorithms are as fast as current $k$-clique algorithms, i.e., $g(k)=(\omega/3\pm o(1))k$, (3) the exponent has sublinear dependence on $k$ with $g(k) \in [\Omega(\sqrt[3]{k}), O(\sqrt{k})]$, or (4) the problem is fixed-parameter tractable, i.e., $g(k) = O(1)$. This yields a more fine-grained perspective than a previous FPT/W[1]-hardness dichotomy (Marx, Computational Complexity 2005). Our most interesting technical contribution is a $f(k)n^{4\sqrt{k}}$-time algorithm for SubsetSum with precedence constraints parameterized by the target $k$ -- particularly the approach, based on generalizing a bound on the Frobenius coin problem to a setting with precedence constraints, might be of independent interest. %K Computer Science, Computational Complexity, cs.CC,Computer Science, Data Structures and Algorithms, cs.DS
[53]
W. Liu, F. Lombardi, M. Shulte, D. J. Miller, Z. Xiang, G. Kesidis, A. Oulasvirta, N. R. Dayama, M. Shiripour, M. John, A. Karrenbauer, and A. Allerhand, “Scanning the Issue,” Proceedings of the IEEE, vol. 108, no. 3, 2020.
Export
BibTeX
@article{Liu2020, TITLE = {Scanning the Issue}, AUTHOR = {Liu, Weiqiang and Lombardi, Fabrizio and Shulte, Michael and Miller, David J. and Xiang, Zhen and Kesidis, George and Oulasvirta, Antti and Dayama, Niraj Ramesh and Shiripour, Morteza and John, Maximilian and Karrenbauer, Andreas and Allerhand, Adam}, LANGUAGE = {eng}, ISSN = {0018-9219}, DOI = {10.1109/JPROC.2020.2975522}, PUBLISHER = {IEEE}, ADDRESS = {New York, NY}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {Proceedings of the IEEE}, VOLUME = {108}, NUMBER = {3}, PAGES = {400--401}, }
Endnote
%0 Journal Article %A Liu, Weiqiang %A Lombardi, Fabrizio %A Shulte, Michael %A Miller, David J. %A Xiang, Zhen %A Kesidis, George %A Oulasvirta, Antti %A Dayama, Niraj Ramesh %A Shiripour, Morteza %A John, Maximilian %A Karrenbauer, Andreas %A Allerhand, Adam %+ External Organizations External Organizations External Organizations External Organizations External Organizations External Organizations External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Scanning the Issue : %G eng %U http://hdl.handle.net/21.11116/0000-0007-4670-C %R 10.1109/JPROC.2020.2975522 %7 2020 %D 2020 %J Proceedings of the IEEE %O Proc. IEEE %V 108 %N 3 %& 400 %P 400 - 401 %I IEEE %C New York, NY %@ false
[54]
Y. Li and V. Nakos, “Sublinear-Time Algorithms for Compressive Phase Retrieval,” IEEE Transactions on Information Theory, vol. 66, no. 11, 2020.
Export
BibTeX
@article{Li_10.1109/TIT.2020.3020701, TITLE = {Sublinear-Time Algorithms for Compressive Phase Retrieval}, AUTHOR = {Li, Yi and Nakos, Vasileios}, LANGUAGE = {eng}, ISSN = {0018-9448}, DOI = {10.1109/TIT.2020.3020701}, PUBLISHER = {IEEE}, ADDRESS = {Piscataway, NJ}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {IEEE Transactions on Information Theory}, VOLUME = {66}, NUMBER = {11}, PAGES = {7302--7310}, }
Endnote
%0 Journal Article %A Li, Yi %A Nakos, Vasileios %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Sublinear-Time Algorithms for Compressive Phase Retrieval : %G eng %U http://hdl.handle.net/21.11116/0000-0007-567C-E %R 10.1109/TIT.2020.3020701 %7 2020 %D 2020 %J IEEE Transactions on Information Theory %V 66 %N 11 %& 7302 %P 7302 - 7310 %I IEEE %C Piscataway, NJ %@ false
[55]
Y. Li and V. Nakos, “Deterministic Sparse Fourier Transform with an ℓ_{∞} Guarantee,” in 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), Saarbrücken, Germany (Virtual Conference), 2020.
Export
BibTeX
@inproceedings{Li_ICALP2020, TITLE = {Deterministic Sparse {F}ourier Transform with an $\ell_{\infty}$ Guarantee}, AUTHOR = {Li, Yi and Nakos, Vasileios}, LANGUAGE = {eng}, ISSN = {1868-8969}, ISBN = {978-3-95977-138-2}, URL = {urn:nbn:de:0030-drops-124844}, DOI = {10.4230/LIPIcs.ICALP.2020.77}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, EDITOR = {Czumaj, Artur and Dawa, Anuj and Merelli, Emanuela}, EID = {77}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {168}, ADDRESS = {Saarbr{\"u}cken, Germany (Virtual Conference)}, }
Endnote
%0 Conference Proceedings %A Li, Yi %A Nakos, Vasileios %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Deterministic Sparse Fourier Transform with an ℓ_{∞} Guarantee : %G eng %U http://hdl.handle.net/21.11116/0000-0007-56A6-D %R 10.4230/LIPIcs.ICALP.2020.77 %U urn:nbn:de:0030-drops-124844 %D 2020 %B 47th International Colloquium on Automata, Languages, and Programming %Z date of event: 2020-07-08 - 2020-07-11 %C Saarbrücken, Germany (Virtual Conference) %B 47th International Colloquium on Automata, Languages, and Programming %E Czumaj, Artur; Dawa, Anuj; Merelli, Emanuela %Z sequence number: 77 %I Schloss Dagstuhl %@ 978-3-95977-138-2 %B Leibniz International Proceedings in Informatics %N 168 %@ false %U https://drops.dagstuhl.de/opus/volltexte/2020/12484/
[56]
D. Lokshtanov, P. Misra, J. Mukherjee, F. Panolan, G. Philip, and S. Saurabh, “2-Approximating Feedback Vertex Set in Tournaments,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{Lokshtanov_SODA20, TITLE = {2-Approximating Feedback Vertex Set in Tournaments}, AUTHOR = {Lokshtanov, Daniel and Misra, Pranabendu and Mukherjee, Joydeep and Panolan, Fahad and Philip, Geevarghese and Saurabh, Saket}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.5555/3381089.3381150}, PUBLISHER = {SIAM}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {1010--1018}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Lokshtanov, Daniel %A Misra, Pranabendu %A Mukherjee, Joydeep %A Panolan, Fahad %A Philip, Geevarghese %A Saurabh, Saket %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations External Organizations External Organizations External Organizations %T 2-Approximating Feedback Vertex Set in Tournaments : %G eng %U http://hdl.handle.net/21.11116/0000-0006-F276-4 %R 10.5555/3381089.3381150 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 1010 - 1018 %I SIAM %@ 978-1-61197-599-4
[57]
D. Marx, “Four Shorts Stories on Surprising Algorithmic Uses of Treewidth,” in Treewidth, Kernels, and Algorithms, Berlin: Springer, 2020.
Export
BibTeX
@incollection{Marx_Four2020, TITLE = {Four Shorts Stories on Surprising Algorithmic Uses of Treewidth}, AUTHOR = {Marx, D{\'a}niel}, LANGUAGE = {eng}, ISBN = {978-3-030-42070-3}, DOI = {10.1007/978-3-030-42071-0_10}, PUBLISHER = {Springer}, ADDRESS = {Berlin}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, BOOKTITLE = {Treewidth, Kernels, and Algorithms}, EDITOR = {Fomin, Fedor V. and Kratsch, Stefan and van Leeuwen, Erik Jan}, PAGES = {129--144}, SERIES = {Lecture Notes in Computer Science}, VOLUME = {12160}, }
Endnote
%0 Book Section %A Marx, Dániel %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Four Shorts Stories on Surprising Algorithmic Uses of Treewidth : %G eng %U http://hdl.handle.net/21.11116/0000-0007-4911-4 %R 10.1007/978-3-030-42071-0_10 %D 2020 %B Treewidth, Kernels, and Algorithms %E Fomin, Fedor V.; Kratsch, Stefan; van Leeuwen, Erik Jan %P 129 - 144 %I Springer %C Berlin %@ 978-3-030-42070-3 %S Lecture Notes in Computer Science %N 12160
[58]
D. Marx and R. B. Sandeep, “Incompressibility of H-free Edge Modification Problems: Towards a Dichotomy,” 2020. [Online]. Available: https://arxiv.org/abs/2004.11761. (arXiv: 2004.11761)
Abstract
Given a graph $G$ and an integer $k$, the $H$-free Edge Editing problem is to find whether there exists at most $k$ pairs of vertices in $G$ such that changing the adjacency of the pairs in $G$ results in a graph without any induced copy of $H$. The existence of polynomial kernels for $H$-free Edge Editing received significant attention in the parameterized complexity literature. Nontrivial polynomial kernels are known to exist for some graphs $H$ with at most 4 vertices, but starting from 5 vertices, polynomial kernels are known only if $H$ is either complete or empty. This suggests the conjecture that there is no other $H$ with at least 5 vertices were $H$-free Edge Editing admits a polynomial kernel. Towards this goal, we obtain a set $\mathcal{H}$ of nine 5-vertex graphs such that if for every $H\in\mathcal{H}$, $H$-free Edge Editing is incompressible and the complexity assumption $NP \not\subseteq coNP/poly$ holds, then $H$-free Edge Editing is incompressible for every graph $H$ with at least five vertices that is neither complete nor empty. That is, proving incompressibility for these nine graphs would give a complete classification of the kernelization complexity of $H$-free Edge Editing for every $H$ with at least 5 vertices. We obtain similar result also for $H$-free Edge Deletion. Here the picture is more complicated due to the existence of another infinite family of graphs $H$ where the problem is trivial (graphs with exactly one edge). We obtain a larger set $\mathcal{H}$ of nineteen graphs whose incompressibility would give a complete classification of the kernelization complexity of $H$-free Edge Deletion for every graph $H$ with at least 5 vertices. Analogous results follow also for the $H$-free Edge Completion problem by simple complementation.
Export
BibTeX
@online{Marx_arXiv2004.11761, TITLE = {Incompressibility of H-free Edge Modification Problems: Towards a Dichotomy}, AUTHOR = {Marx, D{\'a}niel and Sandeep, R. B.}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2004.11761}, EPRINT = {2004.11761}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {Given a graph $G$ and an integer $k$, the $H$-free Edge Editing problem is to find whether there exists at most $k$ pairs of vertices in $G$ such that changing the adjacency of the pairs in $G$ results in a graph without any induced copy of $H$. The existence of polynomial kernels for $H$-free Edge Editing received significant attention in the parameterized complexity literature. Nontrivial polynomial kernels are known to exist for some graphs $H$ with at most 4 vertices, but starting from 5 vertices, polynomial kernels are known only if $H$ is either complete or empty. This suggests the conjecture that there is no other $H$ with at least 5 vertices were $H$-free Edge Editing admits a polynomial kernel. Towards this goal, we obtain a set $\mathcal{H}$ of nine 5-vertex graphs such that if for every $H\in\mathcal{H}$, $H$-free Edge Editing is incompressible and the complexity assumption $NP \not\subseteq coNP/poly$ holds, then $H$-free Edge Editing is incompressible for every graph $H$ with at least five vertices that is neither complete nor empty. That is, proving incompressibility for these nine graphs would give a complete classification of the kernelization complexity of $H$-free Edge Editing for every $H$ with at least 5 vertices. We obtain similar result also for $H$-free Edge Deletion. Here the picture is more complicated due to the existence of another infinite family of graphs $H$ where the problem is trivial (graphs with exactly one edge). We obtain a larger set $\mathcal{H}$ of nineteen graphs whose incompressibility would give a complete classification of the kernelization complexity of $H$-free Edge Deletion for every graph $H$ with at least 5 vertices. Analogous results follow also for the $H$-free Edge Completion problem by simple complementation.}, }
Endnote
%0 Report %A Marx, Dániel %A Sandeep, R. B. %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Incompressibility of H-free Edge Modification Problems: Towards a Dichotomy : %G eng %U http://hdl.handle.net/21.11116/0000-0007-492A-9 %U https://arxiv.org/abs/2004.11761 %D 2020 %X Given a graph $G$ and an integer $k$, the $H$-free Edge Editing problem is to find whether there exists at most $k$ pairs of vertices in $G$ such that changing the adjacency of the pairs in $G$ results in a graph without any induced copy of $H$. The existence of polynomial kernels for $H$-free Edge Editing received significant attention in the parameterized complexity literature. Nontrivial polynomial kernels are known to exist for some graphs $H$ with at most 4 vertices, but starting from 5 vertices, polynomial kernels are known only if $H$ is either complete or empty. This suggests the conjecture that there is no other $H$ with at least 5 vertices were $H$-free Edge Editing admits a polynomial kernel. Towards this goal, we obtain a set $\mathcal{H}$ of nine 5-vertex graphs such that if for every $H\in\mathcal{H}$, $H$-free Edge Editing is incompressible and the complexity assumption $NP \not\subseteq coNP/poly$ holds, then $H$-free Edge Editing is incompressible for every graph $H$ with at least five vertices that is neither complete nor empty. That is, proving incompressibility for these nine graphs would give a complete classification of the kernelization complexity of $H$-free Edge Editing for every $H$ with at least 5 vertices. We obtain similar result also for $H$-free Edge Deletion. Here the picture is more complicated due to the existence of another infinite family of graphs $H$ where the problem is trivial (graphs with exactly one edge). We obtain a larger set $\mathcal{H}$ of nineteen graphs whose incompressibility would give a complete classification of the kernelization complexity of $H$-free Edge Deletion for every graph $H$ with at least 5 vertices. Analogous results follow also for the $H$-free Edge Completion problem by simple complementation. %K Computer Science, Data Structures and Algorithms, cs.DS
[59]
D. Marx, “Four Short Stories on Surprising Algorithmic Uses of Treewidth,” 2020. [Online]. Available: https://arxiv.org/abs/2008.07968. (arXiv: 2008.07968)
Abstract
This article briefly describes four algorithmic problems where the notion of treewidth is very useful. Even though the problems themselves have nothing to do with treewidth, it turns out that combining known results on treewidth allows us to easily describe very clean and high-level algorithms.
Export
BibTeX
@online{Marx_arXiv2008.07968, TITLE = {Four Short Stories on Surprising Algorithmic Uses of Treewidth}, AUTHOR = {Marx, D{\'a}niel}, LANGUAGE = {eng}, URL = {https://arxiv.org/abs/2008.07968}, EPRINT = {2008.07968}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {This article briefly describes four algorithmic problems where the notion of treewidth is very useful. Even though the problems themselves have nothing to do with treewidth, it turns out that combining known results on treewidth allows us to easily describe very clean and high-level algorithms.}, }
Endnote
%0 Report %A Marx, Dániel %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Four Short Stories on Surprising Algorithmic Uses of Treewidth : %G eng %U http://hdl.handle.net/21.11116/0000-0007-4950-D %U https://arxiv.org/abs/2008.07968 %D 2020 %X This article briefly describes four algorithmic problems where the notion of treewidth is very useful. Even though the problems themselves have nothing to do with treewidth, it turns out that combining known results on treewidth allows us to easily describe very clean and high-level algorithms. %K Computer Science, Data Structures and Algorithms, cs.DS
[60]
V. Nakos, “Nearly Optimal Sparse Polynomial Multiplication,” IEEE Transactions on Information Theory, vol. 66, no. 11, 2020.
Export
BibTeX
@article{Nakos_10.1109/TIT.2020.2989385, TITLE = {Nearly Optimal Sparse Polynomial Multiplication}, AUTHOR = {Nakos, Vasileios}, LANGUAGE = {eng}, ISSN = {0018-9448}, DOI = {10.1109/TIT.2020.2989385}, PUBLISHER = {IEEE}, ADDRESS = {Piscataway, NJ}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {IEEE Transactions on Information Theory}, VOLUME = {66}, NUMBER = {11}, PAGES = {7231--7236}, }
Endnote
%0 Journal Article %A Nakos, Vasileios %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Nearly Optimal Sparse Polynomial Multiplication : %G eng %U http://hdl.handle.net/21.11116/0000-0007-567A-0 %R 10.1109/TIT.2020.2989385 %7 2020 %D 2020 %J IEEE Transactions on Information Theory %V 66 %N 11 %& 7231 %P 7231 - 7236 %I IEEE %C Piscataway, NJ %@ false
[61]
D. Neuen, “Hypergraph Isomorphism for Groups with Restricted Composition Factors,” in 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), Saarbrücken, Germany (Virtual Conference), 2020.
Export
BibTeX
@inproceedings{Neuen_ICALP2020, TITLE = {Hypergraph Isomorphism for Groups with Restricted Composition Factors}, AUTHOR = {Neuen, Daniel}, LANGUAGE = {eng}, ISSN = {1868-8969}, ISBN = {978-3-95977-138-2}, URL = {urn:nbn:de:0030-drops-124959}, DOI = {10.4230/LIPIcs.ICALP.2020.88}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, EDITOR = {Czumaj, Artur and Dawa, Anuj and Merelli, Emanuela}, EID = {88}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {168}, ADDRESS = {Saarbr{\"u}cken, Germany (Virtual Conference)}, }
Endnote
%0 Conference Proceedings %A Neuen, Daniel %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Hypergraph Isomorphism for Groups with Restricted Composition Factors : %G eng %U http://hdl.handle.net/21.11116/0000-0007-6DCA-C %R 10.4230/LIPIcs.ICALP.2020.88 %U urn:nbn:de:0030-drops-124959 %D 2020 %B 47th International Colloquium on Automata, Languages, and Programming %Z date of event: 2020-07-08 - 2020-07-11 %C Saarbrücken, Germany (Virtual Conference) %B 47th International Colloquium on Automata, Languages, and Programming %E Czumaj, Artur; Dawa, Anuj; Merelli, Emanuela %Z sequence number: 88 %I Schloss Dagstuhl %@ 978-3-95977-138-2 %B Leibniz International Proceedings in Informatics %N 168 %@ false %U https://drops.dagstuhl.de/opus/volltexte/2020/12495/https://creativecommons.org/licenses/by/3.0/legalcode
[62]
E. Oh and H.-K. Ahn, “Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon,” Discrete & Computational Geometry, vol. 63, no. 2, 2020.
Export
BibTeX
@article{Oh2020, TITLE = {Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon}, AUTHOR = {Oh, Eunjin and Ahn, Hee-Kap}, LANGUAGE = {eng}, ISSN = {0179-5376}, DOI = {10.1007/s00454-019-00063-4}, PUBLISHER = {Springer}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {Discrete \& Computational Geometry}, VOLUME = {63}, NUMBER = {2}, PAGES = {418--454}, }
Endnote
%0 Journal Article %A Oh, Eunjin %A Ahn, Hee-Kap %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon : %G eng %U http://hdl.handle.net/21.11116/0000-0006-8E04-6 %R 10.1007/s00454-019-00063-4 %7 2019 %D 2020 %J Discrete & Computational Geometry %V 63 %N 2 %& 418 %P 418 - 454 %I Springer %@ false
[63]
A. Oulasvirta, N. R. Dayama, M. Shiripour, M. John, and A. Karrenbauer, “Combinatorial Optimization of Graphical User Interface Designs,” Proceedings of the IEEE, vol. 108, no. 3, 2020.
Export
BibTeX
@article{Oulasvirta2020, TITLE = {Combinatorial Optimization of Graphical User Interface Designs}, AUTHOR = {Oulasvirta, Antti and Dayama, Niraj Ramesh and Shiripour, Morteza and John, Maximilian and Karrenbauer, Andreas}, LANGUAGE = {eng}, ISSN = {0018-9219}, DOI = {10.1109/JPROC.2020.2969687}, PUBLISHER = {IEEE}, ADDRESS = {New York, N.Y.}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, DATE = {2020}, JOURNAL = {Proceedings of the IEEE}, VOLUME = {108}, NUMBER = {3}, PAGES = {434--464}, }
Endnote
%0 Journal Article %A Oulasvirta, Antti %A Dayama, Niraj Ramesh %A Shiripour, Morteza %A John, Maximilian %A Karrenbauer, Andreas %+ External Organizations External Organizations External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Combinatorial Optimization of Graphical User Interface Designs : %G eng %U http://hdl.handle.net/21.11116/0000-0006-99BA-C %R 10.1109/JPROC.2020.2969687 %7 2020 %D 2020 %J Proceedings of the IEEE %O Proc. IEEE %V 108 %N 3 %& 434 %P 434 - 464 %I IEEE %C New York, N.Y. %@ false
[64]
B. Ray Chaudhury, J. Garg, and K. Mehlhorn, “EFX exists for three agents,” 2020. [Online]. Available: http://arxiv.org/abs/2002.05119. (arXiv: 2002.05119)
Abstract
We study the problem of distributing a set of indivisible items among agents with additive valuations in a $\mathit{fair}$ manner. The fairness notion under consideration is Envy-freeness up to any item (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture by Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some items are not allocated) with higher Nash welfare than that of any complete EFX allocation.
Export
BibTeX
@online{RayChaudhury_arXiv2002.05119, TITLE = {{EFX} exists for three agents}, AUTHOR = {Ray Chaudhury, Bhaskar and Garg, Jugal and Mehlhorn, Kurt}, LANGUAGE = {eng}, URL = {http://arxiv.org/abs/2002.05119}, EPRINT = {2002.05119}, EPRINTTYPE = {arXiv}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, ABSTRACT = {We study the problem of distributing a set of indivisible items among agents with additive valuations in a $\mathit{fair}$ manner. The fairness notion under consideration is Envy-freeness up to any item (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture by Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some items are not allocated) with higher Nash welfare than that of any complete EFX allocation.}, }
Endnote
%0 Report %A Ray Chaudhury, Bhaskar %A Garg, Jugal %A Mehlhorn, Kurt %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T EFX exists for three agents : %G eng %U http://hdl.handle.net/21.11116/0000-0006-AF99-9 %U http://arxiv.org/abs/2002.05119 %D 2020 %X We study the problem of distributing a set of indivisible items among agents with additive valuations in a $\mathit{fair}$ manner. The fairness notion under consideration is Envy-freeness up to any item (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture by Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some items are not allocated) with higher Nash welfare than that of any complete EFX allocation. %K Computer Science, Computer Science and Game Theory, cs.GT,
[65]
B. Ray Chaudhury, T. Kavitha, K. Mehlhorn, and A. Sgouritsa, “A Little Charity Guarantees Almost Envy-Freeness,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{RayChaudhury_SODA20, TITLE = {A Little Charity Guarantees Almost Envy-Freeness}, AUTHOR = {Ray Chaudhury, Bhaskar and Kavitha, Telikepalli and Mehlhorn, Kurt and Sgouritsa, Alkmini}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.1137/1.9781611975994.162}, PUBLISHER = {SIAM}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {2658 --2672}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Ray Chaudhury, Bhaskar %A Kavitha, Telikepalli %A Mehlhorn, Kurt %A Sgouritsa, Alkmini %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations %T A Little Charity Guarantees Almost Envy-Freeness : %G eng %U http://hdl.handle.net/21.11116/0000-0006-AF89-B %R 10.1137/1.9781611975994.162 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 2658 - 2672 %I SIAM %@ 978-1-61197-599-4
[66]
B. Ray Chaudhury, J. Garg, and K. Mehlhorn, “EFX Exists for Three Agents,” in EC’20, 21st ACM Conference on Economics and Computation, Virtual Event, Hungary, 2020.
Export
BibTeX
@inproceedings{RayChaudhury_EC2020, TITLE = {{EFX} Exists for Three Agents}, AUTHOR = {Ray Chaudhury, Bhaskar and Garg, Jugal and Mehlhorn, Kurt}, LANGUAGE = {eng}, ISBN = {978-1-4503-7975-5}, DOI = {10.1145/3391403.3399511}, PUBLISHER = {ACM}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {EC'20, 21st ACM Conference on Economics and Computation}, EDITOR = {Bir{\'o}, P{\'e}ter and Hartline, Jason}, PAGES = {1--19}, ADDRESS = {Virtual Event, Hungary}, }
Endnote
%0 Conference Proceedings %A Ray Chaudhury, Bhaskar %A Garg, Jugal %A Mehlhorn, Kurt %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society Algorithms and Complexity, MPI for Informatics, Max Planck Society %T EFX Exists for Three Agents : %G eng %U http://hdl.handle.net/21.11116/0000-0007-223A-2 %R 10.1145/3391403.3399511 %D 2020 %B 21st ACM Conference on Economics and Computation %Z date of event: 2020-07-13 - 2020-07-17 %C Virtual Event, Hungary %B EC'20 %E Biró, Péter; Hartline, Jason %P 1 - 19 %I ACM %@ 978-1-4503-7975-5
[67]
M. Roth and P. Wellnitz, “Counting and Finding Homomorphisms is Universal for Parameterized Complexity Theory,” in Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 2020.
Export
BibTeX
@inproceedings{Roth_SODA20, TITLE = {Counting and Finding Homomorphisms is Universal for Parameterized Complexity Theory}, AUTHOR = {Roth, Marc and Wellnitz, Philip}, LANGUAGE = {eng}, ISBN = {978-1-61197-599-4}, DOI = {10.1137/1.9781611975994.133}, PUBLISHER = {SIAM}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms (SODA 2020)}, EDITOR = {Chawla, Shuchi}, PAGES = {2161--2180}, ADDRESS = {Salt Lake City, UT, USA}, }
Endnote
%0 Conference Proceedings %A Roth, Marc %A Wellnitz, Philip %+ External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T Counting and Finding Homomorphisms is Universal for Parameterized Complexity Theory : %G eng %U http://hdl.handle.net/21.11116/0000-0005-8665-2 %R 10.1137/1.9781611975994.133 %D 2020 %B 31st Annual ACM-SIAM Symposium on Discrete Algorithms %Z date of event: 2020-01-05 - 2020-01-08 %C Salt Lake City, UT, USA %B Proceedings of the Thirty-First ACM-SIAM Symposium on Discrete Algorithms %E Chawla, Shuchi %P 2161 - 2180 %I SIAM %@ 978-1-61197-599-4
[68]
S. Saurabh, U. dos S. Souza, and P. Tale, “On the Parameterized Complexity of Grid Contraction,” in 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020), órshavn, Faroe Islands, 2020.
Export
BibTeX
@inproceedings{Saket_SWAT2020, TITLE = {On the Parameterized Complexity of Grid Contraction}, AUTHOR = {Saurabh, Saket and Souza, U{\'e}verton dos Santos and Tale, Prafullkumar}, LANGUAGE = {eng}, ISBN = {978-3-95977-150-4}, URL = {urn:nbn:de:0030-drops-122810}, DOI = {10.4230/LIPIcs.SWAT.2020.34}, PUBLISHER = {Schloss Dagstuhl}, YEAR = {2020}, MARGINALMARK = {$\bullet$}, BOOKTITLE = {17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)}, EDITOR = {Albers, Susanne}, EID = {34}, SERIES = {Leibniz International Proceedings in Informatics}, VOLUME = {162}, ADDRESS = {{\'o}rshavn, Faroe Islands}, }
Endnote
%0 Conference Proceedings %A Saurabh, Saket %A Souza, Uéverton dos Santos %A Tale, Prafullkumar %+ Algorithms and Complexity, MPI for Informatics, Max Planck Society External Organizations Algorithms and Complexity, MPI for Informatics, Max Planck Society %T On the Parameterized Complexity of Grid Contraction : %G eng %U http://hdl.handle.net/21.11116/0000-0006-8BA6-2 %R 10.4230/LIPIcs.SWAT.2020.34 %U urn:nbn:de:0030-drops-122810 %D 2020 %B 17th Scandinavian Symposiumand Workshops on Algorithm Theory %Z date of event: 2020-06-22 - 2020-06-24 %C órshavn, Faroe Islands %B 17th Scandinavian Symposium and Workshops on Algorithm Theory %E Albers, Susanne %Z sequence number: 34 %I Schloss Dagstuhl %@ 978-3-95977-150-4 %B Leibniz International Proceedings in Informatics %N 162 %U https://drops.dagstuhl.de/opus/volltexte/2020/12281/